Eight to Late

Sensemaking and Analytics for Organizations

Archive for the ‘Wicked Problems’ Category

Complex decision making as an infinite game

with 9 comments

A decision is the act of choosing between two or more options.

There are two kinds of decisions, computable and non-computable [1]. In the former, options are well-defined and finite in number, and there are unambiguous facts (data) available based on which options can be rated. In the latter, options are neither clear nor enumerable and facts, if available at all, are ambiguous.

Computable decisions are simple, non-computable decisions are complex. We’ll refer to the two decision types by these names in the remainder of this article.

An example of a simple decision is buying a product (TV, car or whatever) based on well-defined criteria (price, features etc.). An example of a complex decision is formulating a business strategy.

It should be clear that simple decisions involve smaller temporal and monetary stakes – i.e. the cost of getting things wrong is limited and the effects of a bad decision wear off in (a relatively short) time. Neither is true for complex decisions: the cost of a poor choice can be significant, and its negative effects tend to persist over time.

A key feature of complex decisions is that they (usually) affect multiple parties. That is, they are socially complex. This has implications regarding how such decisions should be approached. More on this later.

Conventional decision theory is based on the notion of maximizing benefit or utility. For simple decisions it is assumed that utility of each option can be computed; for complex decisions it is assumed they can be estimated, or at least ranked. The latter assumption is questionable because each party affected by a complex decision will have its own notion of utility, at least at the outset. Moreover, since neither options nor facts are unambiguous at the start, it makes little sense to attempt to estimate utility upfront.

The above being the case, it is clear that complex decisions cannot be made on the basis of maximizing utility alone.  Something else is needed.

–x–

James Carse’s classic book, Finite and Infinite Games, begins with the following lines:

There are at least two kinds of games. One could be called finite, the other infinite. A finite game is played for the purpose of winning, an infinite for the purpose of continuing the play.

A finite game ends when a player or team wins. However, “just as it is essential for a finite game to have a definitive ending, it must also have a precise beginning. Therefore, we can speak of finite games as having temporal boundaries.”

The parallel between simple decisions and finite games should be evident. Although less obvious, it is useful to think of a complex decision as an infinite game.

When making a complex decision – such as a business strategy – decision-makers will often focus on maximising potential benefits (aka utility). However, as often as not, the outcome of the decision will fall far short of the expected benefits and may, in some cases, even lead to ruin. This being so, it is perhaps more fruitful to focus on staying in the game (keep playing) rather than winning (maximising utility).

The aim of a complex decision should be to stay in the game rather than win.

How does one ensure that one stays in the game? Heinz von Foerster’s ethical imperative offers an answer”

Always act to increase your choices.

That is, one should decide in such a way that increases one’s options in the future thereby increasing chances of staying in the game. One can frame this discussion in terms of adaptability:  the greater the number of options the greater the ability to adapt to unexpected changes in the environment.

How can one “act to increase one’s choices”?

One way to do this is to leverage social complexity: get different parties to articulate their preferred options. Some of these options are likely to contradict each other. Nevertheless, there are ways to handle such a diversity of potentially contradictory views in an inclusive manner (for an example, see this paper; for more, check out this book). Such an approach also ensures that the problem and solution spaces are explored more exhaustively than if only a limited number of viewpoints are considered.

infinite_options_graphic

The point is this: there are always more options available than apparent. Indeed, the number of unexplored options at any stage is potentially infinite. The job of the infinite player (decision-maker) is to act so as surface them gradually, and thus stay in the game.

–x–

Traditionally, decision-making is seen as a logical undertaking based on facts or data. In contrast, when viewed as an infinite game, complex decision-making becomes a matter of ethics rather than logic.

Why ethics?

The answer lies in von Foerster’s dictum to increase one’s choices.  By doing so, one increases the chances that fewer stakeholders’ interests are overlooked in the decision-making process.

As Wittgenstein famously said, “It is clear ethics cannot be articulated.” All those tedious classes and books on business ethics miss the point entirely. Ethical matters are necessarily oblique:  the decision-maker who decides in a way that increases (future) choices, will be acting ethically without drawing attention to it, or even being consciously aware of it.

–x–

Any honest discussion of complex decision-making in organisations must address the issue of power.

Carse asserts that players (i.e. decision-makers in the context of this article) become powerful by acquiring titles (e.g. CEO, Manager etc.). However, such titles can only be acquired by winning a finite game– i.e. by being successful in competitions for roles. Power therefore relates to finite rather than infinite games.

As he notes in his book:

Power is a concept that belongs only in finite play. To speak meaningfully of a person’s power is to speak of what that person has already achieved, the titles they have already won.

Be that as it may, one cannot overlook the reality that those in powerful positions can (and often do) subvert the decision-making process by obstructing open and honest discussion of contentious issues. Sometimes they do so by their mere presence in the room.

How does a complex decision-maker deal with the issue of power?

Carse offers the following answer:

How do infinite players contend with power? Since the outcome of infinite play is endlessly open, there is no way of looking back to make an assessment of the power or weakness of earlier play. Infinite players look forward, not to a victory but toward ongoing play. A finite player plays to be powerful; the infinite player plays with strength. Power is concerned (and a consequence of) what has happened, strength with what has yet to happen. Power will be always restricted to a relatively small number of people. Anyone can be strong.

What strength means is context-dependent, but the following may help clarify its relationship to power:

Late last year I attended an end-of-year event at the university I teach at. There I bumped into a student I had mentored some time ago. We got talking about his workplace (a large government agency).

At one point he asked, “We really need to radically change the way we think about and work with data, but I’m not a manager and have no authority to initiate changes that need to be made.”

“Why don’t you demonstrate what you are capable of? Since you are familiar your data, it should be easy enough to frame and tackle a small yet meaningful data science problem.” I replied.

“What if my manager doesn’t like my taking the initiative?”

“It is easier to beg forgiveness than seek permission.”

“He might feel threatened and make life difficult for me.”

“If management doesn’t like you’re doing, it’s their loss. What’s the worst that could happen? You could lose your job. With what you are learning at university you should have no trouble moving on to another role. Indeed, by doing so, you will diversify your experience and increase your future options.”

–x–

To summarise:  when deciding on complex matters, act in a way that maximises possibility rather than utility. Such an approach is inherently ethical and enhances one’s chances of staying in the game.

Complex decision making is an infinite game.

[1] There are many other terms for this classification:  tame and wicked (Horst Rittel), programmed and non-programmed (Herbert Simon), complicated and complex (David Snowden). Paul Culmsee and I have, perhaps confusingly, used the terms uncertain and ambiguous to refer to these in our books.  There are minor contextual differences between how these different authors interpret these terms, but for the most part they are synonymous with computable/non-computable.

 

Written by K

January 21, 2020 at 4:09 am

3 or 7, truth or trust

with one comment

“It is clear that ethics cannot be articulated.” – Ludwig Wittgenstein

Over the last few years I’ve been teaching and refining a series of lecture-workshops on Decision Making Under Uncertainty. Audiences include data scientists and mid-level managers working in corporates and public service agencies. The course is based on the distinction between uncertainties in which the variables are known and can be quantified versus those in which the variables are not known upfront and/or are hard to quantify.

Before going any further, it is worth explaining the distinction via a couple of examples:

An example of the first type of uncertainty is project estimation. A project has an associated time and cost, and although we don’t know what their values are upfront, we can estimate them if we have the right data.  The point to note is this: because such problems can be quantified, the human brain tends to deal with them in a logical manner.

In contrast, business strategy is an example of the second kind of uncertainty. Here we do not know what the key variables are upfront. Indeed we cannot, because different stakeholders will perceive different aspects of a strategy to be paramount depending on their interests – consider, for example, the perspective of a CFO versus that of a CMO. Because of these differences, one cannot make progress on such problems until agreement has been reached on what is important to the group as a whole.  The point to note here is that since such problems involve contentious issues, our reactions to them  tend to be emotional rather than logical.

The difference between the two types of uncertainty is best conveyed experientially, so I have a few in-class activities aimed at doing just that. One of them is an exercise I call “3 or 7“, in which I give students a sheet with the following printed on it:

Circle either the number 3 or 7 below depending on whether you want 3 marks or 7 marks added to your Assignment 2 final mark. Yes, this offer is for real, but there a catch: if more than 10% of the class select 7, no one gets anything.

Write your student ID on the paper so that Kailash can award you the marks. Needless to say, your choice will remain confidential, no one (but Kailash) will know what you have selected.

3              7

Prior to handing out the sheet, I tell them that they:

  • should sit far enough apart so that they can’t see what their neighbours choose,
  • are not allowed to communicate their choices to others until the entire class has turned their sheets.

Before reading any further you may want to think about what typically happens.

–x–

Many readers would have recognized this exercise as a version of the Prisoner’s Dilemma and, indeed, many students in my classes recognize this too.   Even so, there are always enough of “win at the cost of others” types in the room who ensure that I don’t have to award any extra marks. I’ve run the exercise about 10 times, often with groups comprised of highly collaborative individuals who work well together. Despite that,15-20% of the class ends up opting for 7.

It never fails to surprise me that, even in relatively close-knit groups, there are invariably a number of individuals who, if given a chance to gain at the expense of their colleagues, will not hesitate to do so providing their anonymity is ensured.

–x–

Conventional management thinking deems that any organisational activity involving several people has to be closely supervised. Underlying this view is the assumption that individuals involved in the activity will, if left unsupervised, make decisions based on self-interest rather than the common good (as happens in the prisoner’s dilemma game). This assumption finds justification in rational choice theory, which predicts that individuals will act in ways that maximise their personal benefit without any regard to the common good. This view is exemplified in 3 or 7 and, at a societal level, in the so-called Tragedy of the Commons, where individuals who have access to a common resource over-exploit it,  thus depleting the resource entirely.

Fortunately, such a scenario need not come to pass: the work of Elinor Ostrom, one of the 2009 Nobel prize winners for Economics, shows that, given the right conditions, groups can work towards the common good even if it means forgoing personal gains.

Classical economics assumes that individuals’ actions are driven by rational self-interest – i.e. the well-known “what’s in it for me” factor. Clearly, the group will achieve much better results as a whole if it were to exploit the resource in a cooperative way. There are several real-world examples where such cooperative behaviour has been successful in achieving outcomes for the common good (this paper touches on some). However, according to classical economic theory, such cooperative behaviour is simply not possible.

So the question is: what’s wrong with rational choice theory?  A couple of things, at least:

Firstly, implicit in rational choice theory is the assumption that individuals can figure out the best choice in any given situation.  This is obviously incorrect. As Ostrom has stated in one of her papers:

Because individuals are boundedly rational, they do not calculate a complete set of strategies for every situation they face. Few situations in life generate information about all potential actions that one can take, all outcomes that can be obtained, and all strategies that others can take.

Instead, they use heuristics (experienced-based methods), norms (value-based techniques) and rules (mutually agreed regulations) to arrive at “good enough” decisions.  Note that Ostrom makes a distinction between norms and rules, the former being implicit (unstated) rules, which are determined by the cultural attitudes and values)

Secondly, rational choice theory assumes that humans behave as self-centred, short-term maximisers. Such theories work in competitive situations such as the stock-market but not in situations in which collective action is called for, such as the prisoners dilemma.

Ostrom’s work essentially addresses the limitations of rational choice theory by outlining how individuals can work together to overcome self-interest.

–x–

In a paper entitled, A Behavioral Approach to the Rational Choice Theory of Collective Action, published in 1998, Ostrom states that:

…much of our current public policy analysis is based on an assumption that rational individuals are helplessly trapped in social dilemmas from which they cannot extract themselves without inducement or sanctions applied from the outside. Many policies based on this assumption have been subject to major failure and have exacerbated the very problems they were intended to ameliorate. Policies based on the assumptions that individuals can learn how to devise well-tailored rules and cooperate conditionally when they participate in the design of institutions affecting them are more successful in the field…[Note:  see this book by Baland and Platteau, for example]

Since rational choice theory aims to maximise individual gain,  it does not work in situations that demand collective action – and Ostrom presents some very general evidence to back this claim.  More interesting than the refutation of rational choice theory, though, is Ostrom’s discussion of the ways in which individuals “trapped” in social dilemmas end up making the right choices. In particular she singles out two empirically grounded ways in which individuals work towards outcomes that are much better than those offered by rational choice theory. These are:

Communication: In the rational view, communication makes no difference to the outcome.  That is, even if individuals make promises and commitments to each other (through communication), they will invariably break these for the sake of personal gain …or so the theory goes. In real life, however, it has been found that opportunities for communication significantly raise the cooperation rate in collective efforts (see this paper abstract or this one, for example). Moreover, research shows that face-to-face is far superior to any other form of communication, and that the main benefit achieved through communication is exchanging mutual commitment (“I promise to do this if you’ll promise to do that”) and increasing trust between individuals. It is interesting that the main role of communication is to enhance or reinforce the relationship between individuals rather than to transfer information.  This is in line with the interactional theory of communication.

Innovative Governance:  Communication by itself may not be enough; there must be consequences for those who break promises and commitments. Accordingly, cooperation can be encouraged by implementing mutually accepted rules for individual conduct, and imposing sanctions on those who violate them. This effectively amounts to designing and implementing novel governance structures for the activity. Note that this must be done by the group; rules thrust upon the group by an external authority are unlikely to work.

Of course, these factors do not come into play in artificially constrained and time-bound scenarios like 3 or 7.  In such situations, there is no opportunity or time to communicate or set up governance structures. What is clear, even from the simple 3 or 7 exercise,  is that these are required even for groups that appear to be close-knit.

Ostrom also identifies three core relationships that promote cooperation. These are:

Reciprocity: this refers to a family of strategies that are based on the expectation that people will respond to each other in kind – i.e. that they will do unto others as others do unto them.  In group situations, reciprocity can be a very effective means to promote and sustain cooperative behaviour.

Reputation: This refers to the general view of others towards a person. As such, reputation is a part of how others perceive a person, so it forms a part of the identity of the person in question. In situations demanding collective action, people might make judgements on a person’s reliability and trustworthiness based on his or her reputation.’

Trust: Trust refers to expectations regarding others’ responses in situations where one has to act before others. And if you think about it, everything else in Ostrom’s framework is ultimately aimed at engendering or – if that doesn’t work – enforcing trust.

–x—

In an article on ethics and second-order cybernetics, Heinz von Foerster tells the following story:

I have a dear friend who grew up in Marrakech. The house of his family stood on the street that divide the Jewish and the Arabic quarter. As a boy he played with all the others, listened to what they thought and said, and learned of their fundamentally different views. When I asked him once, “Who was right?” he said, “They are both right.”

“But this cannot be,” I argued from an Aristotelian platform, “Only one of them can have the truth!”

“The problem is not truth,” he answered, “The problem is trust.”

For me, that last line summarises the lesson implicit in the admittedly artificial scenario of 3 or 7. In our search for facts and decision-making frameworks we forget the simple truth that in many real-life dilemmas they matter less than we think. Facts and  frameworks cannot help us decide on ambiguous matters in which the outcome depends on what other people do.  In such cases the problem is not truth; the problem is trust.  From your own experience it should be evident it is impossible convince others of your trustworthiness by assertion, the only way to do so is by behaving in a trustworthy way. That is, by behaving ethically rather than talking about it, a point that is squarely missed by so-called business ethics classes.

Yes,  it is clear that ethics cannot be articulated.

Notes:

  1. Portions of this article are lightly edited sections from a 2009 article that I wrote on Ostrom’s work and its relevance to project management.
  2.  Finally, an unrelated but important matter for which I seek your support for a common good: I’m taking on the 7 Bridges Walk to help those affected by cancer. Please donate via my 7 Bridges fundraising page if you can . Every dollar counts; all funds raised will help Cancer Council work towards the vision of a cancer free future.

Written by K

September 18, 2019 at 8:28 pm

Learning, evolution and the future of work

leave a comment »

The Janus-headed rise of AI has prompted many discussions about the future of work.  Most, if not all, are about AI-driven automation and its consequences for various professions. We are warned to prepare for this change by developing skills that cannot be easily “learnt” by machines.  This sounds reasonable at first, but less so on reflection: if skills that were thought to be uniquely human less than a decade ago can now be done, at least partially, by machines, there is no guarantee that any specific skill one chooses to develop will remain automation-proof in the medium-term future.

This begs the question as to what we can do, as individuals, to prepare for a machine-centric workplace. In this post I offer a perspective on this question based on Gregory Bateson’s writings as well as  my consulting and teaching experiences.

Levels of learning

Given that humans are notoriously poor at predicting the future, it should be clear hitching one’s professional wagon to a specific set of skills is not a good strategy. Learning a set of skills may pay off in the short term, but it is unlikely to work in the long run.

So what can one do to prepare for an ambiguous and essentially unpredictable future?

To answer this question, we need to delve into an important, yet oft-overlooked aspect of learning.

A key characteristic of learning is that it is driven by trial and error.  To be sure, intelligence may help winnow out poor choices at some stages of the process, but one cannot eliminate error entirely. Indeed, it is not desirable to do so because error is essential for that “aha” instant that precedes insight.  Learning therefore has a stochastic element: the specific sequence of trial and error followed by an individual is unpredictable and likely to be unique. This is why everyone learns differently: the mental model I build of a concept is likely to be different from yours.

In a paper entitled, The Logical Categories of Learning and Communication, Bateson noted that the stochastic nature of learning has an interesting consequence. As he notes:

If we accept the overall notion that all learning is in some degree stochastic (i.e., contains components of “trial and error”), it follows that an ordering of the processes of learning can be built upon a hierarchic classification of the types of error which are to be corrected in the various learning processes.

Let’s unpack this claim by looking at his proposed classification:

Zero order learning –    Zero order learning refers to situations in which a given stimulus (or question) results in the same response (or answer) every time. Any instinctive behaviour – such as a reflex response on touching a hot kettle – is an example of zero order learning.  Such learning is hard-wired in the learner, who responds with the “correct” option to a fixed stimulus every single time. Since the response does not change with time, the process is not subject to trial and error.

First order learning (Learning I) –  Learning I is where an individual learns to select a correct option from a set of similar elements. It involves a specific kind of trial and error that is best explained through a couple of examples. The  canonical example of Learning I is memorization: Johnny recognises the letter “A” because he has learnt to distinguish it from the 25 other similar possibilities. Another example is Pavlovian conditioning wherein the subject’s response is altered by training: a dog that initially salivates only when it smells food is trained, by repetition, to salivate when it hears the bell.

A key characteristic of Learning I is that the individual learns to select the correct response from a set of comparable possibilities – comparable because the possibilities are of the same type (e.g. pick a letter from the set of alphabets). Consequently, first order learning  cannot lead to a qualitative change in the learner’s response. Much of traditional school and university teaching is geared toward first order learning: students are taught to develop the “correct” understanding of concepts and techniques via a repetition-based process of trial and error.

As an aside, note that much of what goes under the banner of machine learning and AI can be also classed as first order learning.

Second order learning (Learning II) –  Second order learning involves a qualitative change in the learner’s response to a given situation. Typically, this occurs when a learner sees a familiar problem situation in a completely new light, thus opening up new possibilities for solutions.  Learning II therefore necessitates a higher order of trial and error, one that is beyond the ken of machines, at least at this point in time.

Complex organisational problems, such as determining a business strategy, require a second order approach because they cannot be precisely defined and therefore lack an objectively correct solution. Echoing Horst Rittel, solutions to such problems are not true or false, but better or worse.

Much of the teaching that goes on in schools and universities hinders second order learning because it implicitly conditions learners to frame problems in ways that make them amenable to familiar techniques. However, as Russell Ackoff noted, “outside of school, problems are seldom given; they have to be taken, extracted from complex situations…”   Two  aspects of this perceptive statement bear further consideration. Firstly, to extract a problem from a situation one has to appreciate or make sense of  the situation.  Secondly,  once the problem is framed, one may find that solving it requires skills that one does not possess. I expand on the implications of these points in the following two sections.

Sensemaking and second order learning

In an earlier piece, I described sensemaking as the art of collaborative problem formulation. There are a huge variety of sensemaking approaches, the gamestorming site describes many of them in detail.   Most of these are aimed at exploring a problem space by harnessing the collective knowledge of a group of people who have diverse, even conflicting, perspectives on the issue at hand.  The greater the diversity, the more complete the exploration of the problem space.

Sensemaking techniques help in elucidating the context in which a problem lives. This refers to the the problem’s environment, and in particular the constraints that the environment imposes on potential solutions to the problem.  As Bateson puts it, context is “a collective term for all those events which tell an organism among what set of alternatives [it] must make [its] next choice.”  But this begs the question as to how these alternatives are to be determined.  The question cannot be answered directly because it depends on the specifics of the environment in which the problem lives.  Surfacing these by asking the right questions is the task of sensemaking.

As a simple example, if I request you to help me formulate a business strategy, you are likely to begin by asking me a number of questions such as:

  • What kind of business are you in?
  • Who are your customers?
  • What’s the competitive landscape?
  • …and so on

Answers to these questions fill out the context in which the business operates, thus making it possible to formulate a meaningful strategy.

It is important to note that context rarely remains static, it evolves in time. Indeed, many companies faded away because they failed to appreciate changes in their business context:  Kodak is a well-known example, there are many more.  So organisations must evolve too. However, it is a mistake to think of an organisation and its environment as evolving independently, the two always evolve together.  Such co-evolution is as true of natural systems as it is of social ones. As Bateson tells us:

…the evolution of the horse from Eohippus was not a one-sided adjustment to life on grassy plains. Surely the grassy plains themselves evolved [on the same footing] with the evolution of the teeth and hooves of the horses and other ungulates. Turf was the evolving response of the vegetation to the evolution of the horse. It is the context which evolves.

Indeed, one can think of evolution by natural selection as a process by which nature learns (in a second-order sense).

The foregoing discussion points to another problem with traditional approaches to education: we are implicitly taught that problems once solved, stay solved. It is seldom so in real life because, as we have noted, the environment evolves even if the organisation remains static. In the worst case scenario (which happens often enough) the organisation will die if it does not adapt appropriately to changes in its environment. If this is true, then it seems that second-order learning is important not just for individuals but for organisations as a whole. This harks back to notion of the notion of the learning organisation, developed and evangelized by Peter Senge in the early 90s. A learning organisation is one that continually adapts itself to a changing environment. As one might imagine, it is an ideal that is difficult to achieve in practice. Indeed, attempts to create learning organisations have often ended up with paradoxical outcomes.  In view of this it seems more practical for organisations to focus on developing what one might call  learning individuals – people who are capable of adapting to changes in their environment by continual learning

Learning to learn

Cliches aside, the modern workplace is characterised by rapid, technology-driven change. It is difficult for an  individual to keep up because one has to:

    • Figure out which changes are significant and therefore worth responding to.
    • Be capable of responding to them meaningfully.

The media hype about the sexiest job of the 21st century and the like further fuel the fear of obsolescence.  One feels an overwhelming pressure to do something. The old adage about combating fear with action holds true: one has to do something, but the question then is: what meaningful action can one take?

The fact that this question arises points to the failure of traditional university education. With its undue focus on teaching specific techniques, the more important second-order skill of learning to learn has fallen by the wayside.  In reality, though,  it is now easier than ever to learn new skills on ones own. When I was hired as a database architect in 2004, there were few quality resources available for free. Ten years later, I was able to start teaching myself machine learning using topnotch software, backed by countless quality tutorials in blog and video formats. However, I wasted a lot of time in getting started because it took me a while to get over my reluctance to explore without a guide. Cultivating the habit of learning on my own earlier would have made it a lot easier.

Back to the future of work

When industry complains about new graduates being ill-prepared for the workplace, educational institutions respond by updating curricula with more (New!! Advanced!!!) techniques. However, the complaints continue and  Bateson’s notion of second order learning tells us why:

  • Firstly, problem solving is distinct from problem formulation; it is akin to the distinction between human and machine intelligence.
  • Secondly, one does not know what skills one may need in the future, so instead of learning specific skills one has to learn how to learn

In my experience,  it is possible to teach these higher order skills to students in a classroom environment. However, it has to be done in a way that starts from where students are in terms of skills and dispositions and moves them gradually to less familiar situations. The approach is based on David Cavallo’s work on emergent design which I have often used in my  consulting work.  Two examples may help illustrate how this works in  the classroom:

  • Many analytically-inclined people think sensemaking is a waste of time because they see it as “just talk”. So, when teaching sensemaking, I begin with quantitative techniques to deal with uncertainty, such as Monte Carlo simulation, and then gradually introduce examples of uncertainties that are hard if not impossible to quantify. This progression naturally leads on to problem situations in which they see the value of sensemaking.
  • When teaching data science, it is difficult to comprehensively cover basic machine learning algorithms in a single semester. However, students are often reluctant to explore on their own because they tend to be daunted by the mathematical terminology and notation. To encourage exploration (i.e. learning to learn) we use a two-step approach: a) classes focus on intuitive explanations of algorithms and the commonalities between concepts used in different algorithms.  The classes are not lectures but interactive sessions involving lots of exercises and Q&A, b) the assignments go beyond what is covered in the classroom (but still well within reach of most students), this forces them to learn on their own. The approach works: just the other day, my wonderful co-teacher, Alex, commented on the amazing learning journey of some of the students – so tentative and hesitant at first, but well on their way to becoming confident data professionals.

In the end, though, whether or not an individual learner learns depends on the individual. As Bateson once noted:

Perhaps the best documented generalization in the field of psychology is that, at any given moment, the behavioral characteristics of a mammal, and especially of [a human], depend upon the previous experience and behavior of that individual.

The choices we make when faced with change depend on our individual natures and experiences. Educators can’t do much about the former but they can facilitate more meaningful instances of the latter, even within the confines of the classroom.

Written by K

July 5, 2018 at 6:05 pm

Risk management and organizational anxiety

with 10 comments

In practice risk management is a rational, means-end based process: risks are identified, analysed and then “solved” (or mitigated).  Although these steps seem to be objective, each of them involves human perceptions, biases and interests. Where Jill sees an opportunity, Jack may see only risks.

Indeed, the problem of differences in stakeholder perceptions is broader than risk analysis. The recognition that such differences in world-views may be irreconcilable is what led Horst Rittel to coin the now well-known term, wicked problem.   These problems tend to be made up of complex interconnected and interdependent issues which makes them difficult to tackle using standard rational- analytical methods of problem solving.

Most high-stakes risks that organisations face have elements of wickedness – indeed any significant organisational change is fraught with risk. Murphy rules; things can go wrong, and they often do. The current paradigm of risk management, which focuses on analyzing and quantifying risks using rational methods, is not broad enough to account for the wicked aspects of risk.

I had been thinking about this for a while when I stumbled on a fascinating paper by Robin Holt entitled, Risk Management: The Talking Cure, which outlines a possible approach to analysing interconnected risks. In brief, Holt draws a parallel between psychoanalysis (as a means to tackle individual anxiety) and risk management (as a means to tackle organizational anxiety).  In this post, I present an extensive discussion and interpretation of Holt’s paper. Although more about the philosophy of risk management than its practice, I found the paper interesting, relevant and thought provoking. My hope is that some readers might find it so too.

Background

Holt begins by noting that modern life is characterized by uncertainty. Paradoxically, technological progress which should have increased our sense of control over our surroundings and lives has actually heightened our personal feelings of uncertainty. Moreover, this sense of uncertainty is not allayed by rational analysis. On the contrary, it may have even increased it by, for example, drawing our attention to risks that we may otherwise have remained unaware of. Risk thus becomes a lens through which we perceive the world. The danger is that this can paralyze.  As Holt puts it,

…risk becomes the only backdrop to perceiving the world and perception collapses into self-inhibition, thereby compounding uncertainty through inertia.

Most individuals know this through experience: most of us have at one time or another been frozen into inaction because of perceived risks.  We also “know” at a deep personal level that the standard responses to risk are inadequate because many of our worries tend to be inchoate and therefore can neither be coherently articulated nor analysed. In Holt’s words:

..People do not recognize [risk] from the perspective of a breakdown in their rational calculations alone, but because of threats to their forms of life – to the non-calculative way they see themselves and the world. [Mainstream risk analysis] remains caught in the thrall of its own ‘expert’ presumptions, denigrating the very lay knowledge and perceptions on the grounds that they cannot be codified and institutionally expressed.

Holt suggests that risk management should account for the “codified, uncodified and uncodifiable aspects of uncertainty from an organizational perspective.” This entails a mode of analysis that takes into account different, even conflicting, perspectives in a non-judgemental way. In essence, he suggests “talking it over” as a means to increase awareness of the contingent nature of risks rather than a means of definitively resolving them.

Shortcomings of risk analysis

The basic aim of risk analysis (as it is practiced) is to contain uncertainty within set bounds that are determined by an organisation’s risk appetite.  As mentioned earlier, this process begins by identifying and classifying risks. Once this is done, one determines the probability and impact of each risk. Then, based on priorities and resources available (again determined by the organisation’s risk appetite) one develops strategies to mitigate the risks that are significant from the organisation’s perspective.

However, the messiness of organizational life makes it difficult to see risk in such a clear-cut way. We may  pretend to be rational about it, but in reality we perceive it through the lens of our background, interests , experiences.  Based on these perceptions we rationalize our action (or inaction!) and simply get on with life. As Holt writes:

The concept [of risk] refers to…the mélange of experience, where managers accept contingencies without being overwhelmed to a point of complete passivity or confusion, Managers learn to recognize the differences between things, to acknowledge their and our limits. Only in this way can managers be said to make judgements, to be seen as being involved in something called the future.

Then, in a memorable line, he goes on to say:

The future, however, lasts a long time, so much so as to make its containment and prediction an often futile exercise.

Although one may well argue that this is not the case for many organizational risks, it is undeniable that certain mitigation strategies (for example, accepting risks that turn out to be significant later) may have significant consequences in the not-so-near future.

Advice from a politician-scholar

So how can one address the slippery aspects of risk – the things people sense intuitively, but find difficult to articulate?

Taking inspiration from Machiavelli, Holt suggests reframing risk management as a means to determine wise actions in the face of the contradictory forces of fortune and necessity.  As Holt puts it:

Necessity describes forces that are unbreachable but manageable by acceptance and containment—acts of God, tendencies of the species, and so on. In recognizing inevitability, [one can retain one’s] position, enhancing it only to the extent that others fail to recognize necessity. Far more influential, and often confused with necessity, is fortune. Fortune is elusive but approachable. Fortune is never to be relied upon: ‘The greatest good fortune is always least to be trusted’; the good is often kept underfoot and the ridiculous elevated, but it provides [one] with opportunity.

Wise actions involve resolve and cunning (which I interpret as political nous). This entails understanding that we do not have complete (or even partial) control over events that may occur in the future. The future is largely unknowable as are people’s true drives and motivations. Yet, despite this, managers must act.  This requires personal determination together with a deep understanding of the social and political aspects of one’s environment.

And a little later,

…risk management is not the clear conception of a problem coupled to modes of rankable resolutions, or a limited process, but a judgemental  analysis limited by the vicissitudes of budgets, programmes, personalities and contested priorities.

In short: risk management in practice tends to be a far way off from how it is portrayed in textbooks and the professional literature.

The wickedness of risk management

Most managers and those who work under their supervision have been schooled in the rational-scientific approach of problem solving. It is no surprise, therefore, that they use it to manage risks: they gather and analyse information about potential risks, formulate potential solutions (or mitigation strategies) and then implement the best one (according to predetermined criteria). However, this method works only for problems that are straightforward or tame, rather than wicked.

Many of the issues that risk managers are confronted with are wicked, messy or both.  Often though, such problems are treated as being tame.   Reducing a wicked or messy problem to one amenable to rational analysis invariably entails overlooking  the views of certain stakeholder groups or, worse, ignoring key  aspects of the problem.  This may work in the short term, but will only exacerbate the problem in the longer run. Holt illustrates this point as follows:

A primary danger in mistaking a mess for a tame problem is that it becomes even more difficult to deal with the mess. Blaming ‘operator error’ for a mishap on the production line and introducing added surveillance is an illustration of a mess being mistaken for a tame problem. An operator is easily isolated and identifiable, whereas a technological system or process is embedded, unwieldy and, initially, far more costly to alter. Blaming operators is politically expedient. It might also be because managers and administrators do not know how to think in terms of messes; they have not learned how to sort through complex socio-technical systems.

It is important to note that although many risk management practitioners recognize the essential wickedness of the issues they deal with, the practice of risk management is not quite up to the task of dealing with such matters.  One step towards doing this is to develop a shared (enterprise-wide) understanding of risks by soliciting input from diverse stakeholders groups, some of who may hold opposing views.

The skills required to do this are very different from the analytical techniques that are the focus of problem solving and decision making techniques that are taught in colleges and business schools.  Analysis is replaced by sensemaking – a collaborative process that harnesses the wisdom of a group to arrive at a collective understanding of a problem and thence a common  commitment to a course of action. This necessarily involves skills that do not appear in the lexicon of rational problem solving: negotiation, facilitation, rhetoric and those of the same ilk that are dismissed as being of no relevance by the scientifically oriented analyst.

In the end though, even this may not be enough: different stakeholders may perceive a given “risk” in have wildly different ways, so much so that no consensus can be reached.  The problem is that the current framework of risk management requires the analyst to perform an objective analysis of situation/problem, even in situations where this is not possible.

To get around this Holt suggests that it may be more useful to see risk management as a way to encounter problems rather than analyse or solve them.

What does this mean?

He sees this as a forum in which people can talk about the risks openly:

To enable organizational members to encounter problems, risk management’s repertoire of activity needs to engage their all too human components: belief, perception, enthusiasm and fear.

This gets to the root of the problem: risk matters because it increases anxiety and generally affects peoples’ sense of wellbeing. Given this, it is no surprise that Holt’s proposed solution draws on psychoanalysis.

The analogy between psychoanalysis and risk management

Any discussion of psychoanalysis –especially one that is intended for an audience that is largely schooled in rational/scientific methods of analysis – must begin with the acknowledgement that the claims of psychoanalysis cannot be tested. That is, since psychoanalysis speaks of unobservable “objects” such as the ego and the unconscious, any claims it makes about these concepts cannot be proven or falsified.

However  as Holt suggests, this is exactly what makes it a good fit for encountering (as opposed to  analyzing) risks. In his words:

It is precisely because psychoanalysis avoids an overarching claim to produce testable, watertight, universal theories that it is of relevance for risk management. By so avoiding universal theories and formulas, risk management can afford to deviate from pronouncements using mathematical formulas to cover the ‘immanent indeterminables’ manifest in human perception and awareness and systems integration.

His point is that there is a clear parallel between psychoanalysis and the individual, and risk management and the organisation:

We understand ourselves not according to a template but according to our own peculiar, beguiling histories. Metaphorically, risk management can make explicit a similar realization within and between organizations. The revealing of an unconscious world and its being in a constant state of tension between excess and stricture, between knowledge and ignorance, is emblematic of how organizational members encountering messes, wicked problems and wicked messes can be forced to think.

In brief, Holt suggests that what psychoanalysis does for the individual, risk management ought to do for the organisation.

Talking it over – the importance of conversations

A key element of psychoanalysis is the conversation between the analyst and patient. Through this process, the analyst attempts to get the patient to become aware of hidden fears and motivations. As Holt puts it,

Psychoanalysis occupies the point of rupture between conscious intention and unconscious desire — revealing repressed or overdetermined aspects of self-organization manifest in various expressions of anxiety, humour, and so on

And then, a little later,   he makes the connection to organisations:

The fact that organizations emerge from contingent, complex interdependencies between specific narrative histories suggests that risk management would be able to use similar conversations to psychoanalysis to investigate hidden motives, to examine…the possible reception of initiatives or strategies from the perspective of inherently divergent stakeholders, or to analyse the motives for and expectations of risk management itself. This fundamentally reorients the perspective of risk management from facing apparent uncertainties using technical assessment tools, to using conversations devoid of fixed formulas to encounter questioned identities, indeterminate destinies, multiple and conflicting aims and myriad anxieties.

Through conversations involving groups of stakeholders who have different risk perceptions,   one might be able to get a better understanding of a particular risk and hence, may be, design a more effective mitigation strategy.   More importantly, one may even realise that certain risks are not risks at all or others that seem straightforward have implications that would have remained hidden were it not for the conversation.

These collective conversations would take place in workshops…

…that tackle problems as wicked messes, avoid lowest-denominator consensus in favour of continued discovery of alternatives through conversation, and are instructed by metaphor rather than technical taxonomy, risk management is better able to appreciate the everyday ambivalence that fundamentally influences late-modern organizational activity. As such, risk management would be not merely a rationalization of uncertain experience but a structured and contested activity involving multiple stakeholders engaged in perpetual translation from within environments of operation and complexes of aims.

As a facilitator of such workshops, the risk analyst provokes stakeholders to think about their feelings and motivations that may be “out of bounds” in a standard risk analysis workshop.  Such a paradigm goes well beyond mainstream risk management because it addresses the risk-related anxieties and fears of individuals who are affected by it.

Conclusion

This brings me to the end of my not-so-short summary of Holt’s paper. Given the length of this post, I reckon I should keep my closing remarks short. So I’ll leave it here paraphrasing the last line of the paper, which summarises its main message:  risk management ought to be about developing an organizational capacity for overcoming risks, freed from the presumption of absolute control.

Written by K

February 5, 2018 at 11:21 pm

The dark side of data science

with 9 comments

Data scientists are sometimes blind to the possibility that the predictions of their algorithms can have unforeseen negative effects on people. Ethical or social implications are easy to overlook when one finds interesting new patterns in data, especially if they promise significant financial gains. The Centrelink debt recovery debacle, recently reported in the Australian media, is a case in point.

Here is the story in brief:

Centrelink is an Australian Government organisation responsible for administering welfare services and payments to those in need. A major challenge such organisations face is ensuring that their clients are paid no less and no more than what is due to them. This is difficult because it involves crosschecking client income details across multiple systems owned by different government departments, a process that necessarily involves many assumptions. In July 2016, Centrelink unveiled an automated compliance system that compares income self-reported by clients to information held by the taxation office.

The problem is that the algorithm is flawed: it makes strong (and incorrect!) assumptions regarding the distribution of income across a financial year and, as a consequence, unfairly penalizes a number of legitimate benefit recipients.  It is very likely that the designers and implementers of the algorithm did not fully understand the implications of their assumptions. Worse, from the errors made by the system, it appears they may not have adequately tested it either.  But this did not stop them (or, quite possibly, their managers) from unleashing their algorithm on an unsuspecting public, causing widespread stress and distress.  More on this a bit later.

Algorithms like the one described above are the subject of Cathy O’Neil’s aptly titled book, Weapons of Math Destruction.  In the remainder of this article I discuss the main themes of the book.  Just to be clear, this post is more riff than review. However, for those seeking an opinion, here’s my one-line version: I think the book should be read not only by data science practitioners, but also by those who use or are affected by their algorithms (which means pretty much everyone!).

Abstractions and assumptions

‘O Neil begins with the observation that data algorithms are mathematical models of reality, and are necessarily incomplete because several simplifying assumptions are invariably baked into them. This point is important and often overlooked so it is worth illustrating via an example.

When assessing a person’s suitability for a loan, a bank will want to know whether the person is a good risk. It is impossible to model creditworthiness completely because we do not know all the relevant variables and those that are known may be hard to measure. To make up for their ignorance, data scientists typically use proxy variables, i.e. variables that are believed to be correlated with the variable of interest and are also easily measurable. In the case of creditworthiness, proxy variables might be things like gender, age, employment status, residential postcode etc.  Unfortunately many of these can be misleading, discriminatory or worse, both.

The Centrelink algorithm provides a good example of such a “double-whammy” proxy. The key variable it uses is the difference between the client’s annual income reported by the taxation office and self-reported annual income stated by the client. A large difference is taken to be an indicative of an incorrect payment and hence an outstanding debt. This simplistic assumption overlooks the fact that most affected people are not in steady jobs and therefore do not earn regular incomes over the course of a financial year (see this article by Michael Griffin, for a detailed example).  Worse, this crude proxy places an unfair burden on vulnerable individuals for whom casual and part time work is a fact of life.

Worse still, for those wrongly targeted with a recovery notice, getting the errors sorted out is not a straightforward process. This is typical of a WMD. As ‘O Neil states in her book, “The human victims of WMDs…are held to a far higher standard of evidence than the algorithms themselves.”  Perhaps this is because the algorithms are often opaque. But that’s a poor excuse.  This is the only technical field where practitioners are held to a lower standard of accountability than those affected by their products.

‘O Neil’s sums it up rather nicely when she calls algorithms like the Centrelink one  weapons of math destruction (WMD).

Self-fulfilling prophecies and feedback loops

A characteristic of WMD is that their predictions often become self-fulfilling prophecies. For example a person denied a loan by a faulty risk model is more likely to be denied again when he or she applies elsewhere, simply because it is on their record that they have been refused credit before. This kind of destructive feedback loop is typical of a WMD.

An example that ‘O Neil dwells on at length is a popular predictive policing program. Designed for efficiency rather than nuanced judgment, such algorithms measure what can easily be measured and act by it, ignoring the subtle contextual factors that inform the actions of experienced officers on the beat. Worse, they can lead to actions that can exacerbate the problem. For example, targeting young people of a certain demographic for stop and frisk actions can alienate them to a point where they might well turn to crime out of anger and exasperation.

As Goldratt famously said, “Tell me how you measure me and I’ll tell you how I’ll behave.”

This is not news: savvy managers have known about the dangers of managing by metrics for years. The problem is now exacerbated manyfold by our ability to implement and act on such metrics on an industrial scale, a trend that leads to a dangerous devaluation of human judgement in areas where it is most needed.

A related problem – briefly mentioned earlier – is that some of the important variables are known but hard to quantify in algorithmic terms. For example, it is known that community-oriented policing, where officers on the beat develop relationships with people in the community, leads to greater trust. The degree of trust is hard to quantify, but it is known that communities that have strong relationships with their police departments tend to have lower crime rates than similar communities that do not.  Such important but hard-to-quantify factors are typically missed by predictive policing programs.

Blackballed!

Ironically, although WMDs can cause destructive feedback loops, they are often not subjected to feedback themselves. O’Neil gives the example of algorithms that gauge the suitability of potential hires.  These programs often use proxy variables such as IQ test results, personality tests etc. to predict employability.  Candidates who are rejected often do not realise that they have been screened out by an algorithm. Further, it often happens that candidates who are thus rejected go on to successful careers elsewhere. However, this post-rejection information is never fed back to the algorithm because it impossible to do so.

In such cases, the only way to avoid being blackballed is to understand the rules set by the algorithm and play according to them. As ‘O Neil so poignantly puts it, “our lives increasingly depend on our ability to make our case to machines.” However, this can be difficult because it assumes that a) people know they are being assessed by an algorithm and 2) they have knowledge of how the algorithm works. In most hiring scenarios neither of these hold.

Just to be clear, not all data science models ignore feedback. For example, sabermetric algorithms used to assess player performance in Major League Baseball are continually revised based on latest player stats, thereby taking into account changes in performance.

Driven by data

In recent years, many workplaces have gradually seen the introduction to data-driven efficiency initiatives. Automated rostering, based on scheduling algorithms is an example. These algorithms are based on operations research techniques that were developed for scheduling complex manufacturing processes. Although appropriate for driving efficiency in manufacturing, these techniques are inappropriate for optimising shift work because of the effect they have on people. As O’ Neil states:

Scheduling software can be seen as an extension of just-in-time economy. But instead of lawn mower blades or cell phone screens showing up right on cue, it’s people, usually people who badly need money. And because they need money so desperately, the companies can bend their lives to the dictates of a mathematical model.

She correctly observes that an, “oversupply of low wage labour is the problem.” Employers know they can get away with treating people like machine parts because they have a large captive workforce.  What makes this seriously scary is that vested interests can make it difficult to outlaw such exploitative practices. As ‘O Neil mentions:

Following [a] New York Times report on Starbucks’ scheduling practices, Democrats in Congress promptly drew up bills to rein in scheduling software. But facing a Republican majority fiercely opposed to government regulations, the chances that their bill would become law were nil. The legislation died.

Commercial interests invariably trump social and ethical issues, so it is highly unlikely that industry or government will take steps to curb the worst excesses of such algorithms without significant pressure from the general public. A first step towards this is to educate ourselves on how these algorithms work and the downstream social effects of their predictions.

Messing with your mind

There is an even more insidious way that algorithms mess with us. Hot on the heels of the recent US presidential election, there were suggestions that fake news items on Facebook may have influenced the results.  Mark Zuckerberg denied this, but as this Casey Newton noted in this trenchant tweet, the denial leaves Facebook in “the awkward position of having to explain why they think they drive purchase decisions but not voting decisions.”

Be that as it may, the fact is Facebook’s own researchers have been conducting experiments to fine tune a tool they call the “voter megaphone”. Here’s what ‘O Neil says about it:

The idea was to encourage people to spread the word that they had voted. This seemed reasonable enough. By sprinkling people’s news feeds with “I voted” updates, Facebook was encouraging Americans – more that sixty-one million of them – to carry out their civic duty….by posting about people’s voting behaviour, the site was stoking peer pressure to vote. Studies have shown that the quiet satisfaction of carrying out a civic duty is less likely to move people than the possible judgement of friends and neighbours…The Facebook started out with a constructive and seemingly innocent goal to encourage people to vote. And it succeeded…researchers estimated that their campaign had increased turnout by 340,000 people. That’s a big enough crowd to swing entire states, and even national elections.

And if that’s not scary enough, try this:

For three months leading up to the election between President Obama and Mitt Romney, a researcher at the company….altered the news feed algorithm for about two million people, all of them politically engaged. The people got a higher proportion of hard news, as opposed to the usual cat videos, graduation announcements, or photos from Disney world….[the researcher] wanted to see  if getting more [political] news from friends changed people’s political behaviour. Following the election [he] sent out surveys. The self-reported results that voter participation in this group inched up from 64 to 67 percent.

This might not sound like much, but considering the thin margins of recent presidential elections, it could be enough to change a result.

But it’s even more insidious.  In a paper published in 2014, Facebook researchers showed that users’ moods can be influenced by the emotional content of their newsfeeds. Here’s a snippet from the abstract of the paper:

In an experiment with people who use Facebook, we test whether emotional contagion occurs outside of in-person interaction between individuals by reducing the amount of emotional content in the News Feed. When positive expressions were reduced, people produced fewer positive posts and more negative posts; when negative expressions were reduced, the opposite pattern occurred. These results indicate that emotions expressed by others on Facebook influence our own emotions, constituting experimental evidence for massive-scale contagion via social networks.

As you might imagine, there was a media uproar following which  the lead researcher issued a clarification and  Facebook officials duly expressed regret (but, as far as I know, not an apology).  To be sure, advertisers have been exploiting this kind of “mind control” for years, but a public social media platform should (expect to) be held to a higher standard of ethics. Facebook has since reviewed its internal research practices, but the recent fake news affair shows that the story is to be continued.

Disarming weapons of math destruction

The Centrelink debt debacle, Facebook mood contagion experiments and the other case studies mentioned in the book illusrate the myriad ways in which Big Data algorithms have a pernicious effect on our day-to-day lives. Quite often people remain unaware of their influence, wondering why a loan was denied or a job application didn’t go their way. Just as often, they are aware of what is happening, but are powerless to change it – shift scheduling algorithms being a case in point.

This is not how it was meant to be. Technology was supposed to make life better for all, not just the few who wield it.

So what can be done? Here are some suggestions:

  • To begin with, education is the key. We must work to demystify data science, create a general awareness of data science algorithms and how they work. O’ Neil’s book is an excellent first step in this direction (although it is very thin on details of how the algorithms work)
  • Develop a code of ethics for data science practitioners. It is heartening to see that IEEE has recently come up with a discussion paper on ethical considerations for artificial intelligence and autonomous systems and ACM has proposed a set of principles for algorithmic transparency and accountability.  However, I should also tag this suggestion with the warning that codes of ethics are not very effective as they can be easily violated. One has to – somehow – embed ethics in the DNA of data scientists. I believe, one way to do this is through practice-oriented education in which data scientists-in-training grapple with ethical issues through data challenges and hackathons. It is as Wittgenstein famously said, “it is clear that ethics cannot be articulated.” Ethics must be practiced.
  • Put in place a system of reliable algorithmic audits within data science departments, particularly those that do work with significant social impact.
  • Increase transparency a) by publishing information on how algorithms predict what they predict and b) by making it possible for those affected by the algorithm to access the data used to classify them as well as their classification, how it will be used and by whom.
  • Encourage the development of algorithms that detect bias in other algorithms and correct it.
  • Inspire aspiring data scientists to build models for the good.

It is only right that the last word in this long riff should go to ‘O Neil whose work inspired it. Towards the end of her book she writes:

Big Data processes codify the past. They do not invent the future. Doing that requires moral imagination, and that’s something that only humans can provide. We have to explicitly embed better values into our algorithms, creating Big Data models that follow our ethical lead. Sometimes that will mean putting fairness ahead of profit.

Excellent words for data scientists to live by.

Written by K

January 17, 2017 at 8:38 pm

The Heretic’s Guide to Management – understanding ambiguity in the corporate world

with 7 comments

I am delighted to announce that my new business book, The Heretic’s Guide to Management: The Art of Harnessing Ambiguity, is now available in e-book and print formats. The book, co-written with Paul Culmsee, is a loose sequel to our previous tome, The Heretics Guide to Best Practices.

Many reviewers liked the writing style of our first book, which combined rigour with humour. This book continues in the same vein, so if you enjoyed the first one we hope you might like this one too. The new book is half the size of the first one and I considerably less idealistic too. In terms of subject matter, I could say “Ambiguity, Teddy Bears and Fetishes” and leave it at that…but that might leave you thinking that it’s not the kind of book you would want anyone to see on your desk!

Rest assured, The Heretic’s Guide to Management is not a corporate version of Fifty Shades of Grey. Instead, it aims to delve into the complex but fascinating ways in which ambiguity affects human behaviour. More importantly, it discusses how ambiguity can be harnessed in ways that achieve positive outcomes.  Most management techniques (ranging from strategic planning to operational budgeting) attempt to reduce ambiguity and thereby provide clarity. It is a profound irony of modern corporate life that they often end up doing the opposite: increasing ambiguity rather than reducing it.

On the surface, it is easy enough to understand why: organizations are complex entities so it is unreasonable to expect management models, such as those that fit neatly into a 2*2 matrix or a predetermined checklist, to work in the real world. In fact, expecting them to work as advertised is like colouring a paint-by-numbers Mona Lisa, expecting to recreate Da Vinci’s masterpiece. Ambiguity therefore invariably remains untamed, and reality reimposes itself no matter how alluring the model is.

It turns out that most of us have a deep aversion to situations that involve even a hint of ambiguity. Recent research in neuroscience has revealed the reason for this: ambiguity is processed in the parts of the brain which regulate our emotional responses. As a result, many people associate it with feelings of anxiety. When kids feel anxious, they turn to transitional objects such as teddy bears or security blankets. These objects provide them with a sense of stability when situations or events seem overwhelming. In this book, we show that as grown-ups we don’t stop using teddy bears – it is just that the teddies we use take a different, more corporate, form. Drawing on research, we discuss how management models, fads and frameworks are actually akin to teddy bears. They provide the same sense of comfort and certainty to corporate managers and minions as real teddies do to distressed kids.

A plain old Teddy

A Plain Teddy

Most children usually outgrow their need for teddies as they mature and learn to cope with their childhood fears. However, if development is disrupted or arrested in some way, the transitional object can become a fetish – an object that is held on to with a pathological intensity, simply for the comfort that it offers in the face of ambiguity. The corporate reliance on simplistic solutions for the complex challenges faced is akin to little Johnny believing that everything will be OK provided he clings on to Teddy.

When this happens, the trick is finding ways to help Johnny overcome his fear of ambiguity.

Ambiguity is a primal force that drives much of our behaviour. It is typically viewed negatively, something to be avoided or to be controlled.

A Sith Teddy

A Sith Teddy

The truth, however, is that ambiguity is a force that can be used in positive ways too. The Force that gave the Dark Side their power in the Star Wars movies was harnessed by the Jedi in positive ways.

A Jedi Teddy

A Jedi Teddy

Our book shows you how ambiguity, so common in the corporate world, can be harnessed to achieve the results you want.

The e-book is available via popular online outlets. Here are links to some:

Amazon Kindle

Google Play

Kobo

For those who prefer paperbacks, the print version is available here.

Thanks for your support 🙂

Written by K

July 12, 2016 at 10:30 pm

Three types of uncertainty you (probably) overlook

with 5 comments

Introduction – uncertainty and decision-making

Managing uncertainty deciding what to do in the absence of reliable information – is a significant part of project management and many other managerial roles. When put this way, it is clear that managing uncertainty is primarily a decision-making problem. Indeed, as I will discuss shortly, the main difficulties associated with decision-making are related to specific types of uncertainties that we tend to overlook.

Let’s begin by looking at the standard approach to decision-making, which goes as follows:

  1. Define the decision problem.
  2. Identify options.
  3. Develop criteria for rating options.
  4. Evaluate options against criteria.
  5. Select the top rated option.

As I have pointed out in this post, the above process is too simplistic for some of the complex, multifaceted decisions that we face in life and at work (switching jobs, buying a house or starting a business venture, for example). In such cases:

  1. It may be difficult to identify all options.
  2. It is often impossible to rate options meaningfully because of information asymmetry – we know more about some options than others. For example, when choosing whether or not to switch jobs, we know more about our current situation than the new one.
  3. Even when ratings are possible, different people will rate options differently – i.e. different people invariably have different preferences for a given outcome. This makes it difficult to reach a consensus.

Regular readers of this blog will know that the points listed above are characteristics of wicked problems.  It is fair to say that in recent years, a general awareness of the ubiquity of wicked problems has led to an appreciation of the limits of classical decision theory. (That said,  it should be noted that academics have been aware of this for a long time: Horst Rittel’s classic paper on the dilemmas of planning, written in 1973, is a good example. And there are many others that predate it.)

In this post  I look into some hard-to-tackle aspects of uncertainty by focusing on the aforementioned shortcomings of classical decision theory. My discussion draws on a paper by Richard Bradley and Mareile Drechsler.

This article is organised as follows: I first present an overview of the standard approach to dealing with uncertainty and discuss its limitations. Following this, I elaborate on three types of uncertainty that are discussed in the paper.

Background – the standard view of uncertainty

The standard approach to tackling uncertainty was  articulated by Leonard Savage in his classic text, Foundations of Statistics. Savage’s approach can be summarized as follows:

  1. Figure out all possible states (outcomes)
  2. Enumerate actions that are possible
  3. Figure out the consequences of actions for all possible states.
  4. Attach a value (aka preference) to each consequence
  5. Select the course of action that maximizes value (based on an appropriately defined measure, making sure to factor in the likelihood of achieving the desired consequence)

(Note the close parallels between this process and the standard approach to decision-making outlined earlier.)

To keep things concrete it is useful to see how this process would work in a simple real-life example. Bradley and Drechsler quote the following example from Savage’s book that does just that:

…[consider] someone who is cooking an omelet and has already broken five good eggs into a bowl, but is uncertain whether the sixth egg is good or rotten. In deciding whether to break the sixth egg into the bowl containing the first five eggs, to break it into a separate saucer, or to throw it away, the only question this agent has to grapple with is whether the last egg is good or rotten, for she knows both what the consequence of breaking the egg is in each eventuality and how desirable each consequence is. And in general it would seem that for Savage once the agent has settled the question of how probable each state of the world is, she can determine what to do simply by averaging the utilities (Note: utility is basically a mathematical expression of preference or value) of each action’s consequences by the probabilities of the states of the world in which they are realised…

In this example there are two states (egg is good, egg is rotten), three actions (break egg into bowl, break egg into separate saucer to check if it rotten, throw egg away without checking) and three consequences (spoil all eggs, save eggs in bowl and save all eggs if last egg is not rotten, save eggs in bowl and potentially waste last egg). The problem then boils down to figuring out our preferences for the options (in some quantitative way) and the probability of the two states.  At first sight, Savage’s approach seems like a reasonable way to deal with uncertainty.  However, a closer look reveals major problems.

Problems with the standard approach

Unlike the omelet example, in real life situations it is often difficult to enumerate all possible states or foresee all consequences of an action. Further, even if states and consequences are known, we may not what value to attach to them – that is, we may not be able to determine our preferences for those consequences unambiguously. Even in those situations  where we can,  our preferences for may be subject to change  – witness the not uncommon situation where lottery winners end up wishing they’d never wonThe standard prescription works therefore works only in situations where all states, actions and consequences are known – i.e. tame situations, as opposed to wicked ones.

Before going any further, I should mention that Savage was cognisant of the limitations of his approach. He pointed out that it works only in what he called small world situations–  i.e. situations in which it is possible to enumerate and evaluate all options.  As Bradley and Drechsler put it,

Savage was well aware that not all decision problems could be represented in a small world decision matrix. In Savage’s words, you are in a small world if you can “look before you leap”; that is, it is feasible to enumerate all contingencies and you know what the consequences of actions are. You are in a grand world when you must “cross the bridge when you come to it”, either because you are not sure what the possible states of the world, actions and/or consequences are…

In the following three sections  I elaborate on the complications mentioned above emphasizing, once again, that many real life situations are prone to such complications.

State space uncertainty

The standard view of uncertainty assumes that all possible states are given as a part of the problem definition – as in the omelet example discussed earlier.  In real life, however, this is often not the case.

Bradley and Drechsler identify two distinct cases of state space uncertainty. The first one is when we are unaware that we’re missing states and/or consequences. For example, organisations that embark on a restructuring program are so focused on the cost-related consequences that they may overlook factors such as loss of morale and/or loss of talent (and the consequent loss of productivity). The second, somewhat rarer, case is when we are aware that we might be missing something but we don’t quite know what it is. All one can do here, is make appropriate contingency plans based on  guesses regarding possible consequences.

Figuring out possible states and consequences is largely a matter of scenario envisioning based on knowledge and practical experience. It stands to reason that this is best done by leveraging the collective experience and wisdom of people from diverse backgrounds. This is pretty much the rationale behind collective decision-making techniques such as Dialogue Mapping.

Option uncertainty

The standard approach to tackling uncertainty assumes that the connection between actions and consequences is well defined. This is often not the case, particularly for wicked problems.  For example, as I have discussed in this post, enterprise transformation programs with well-defined and articulated objectives often end up having a host of unintended consequences. At an even more basic level, in some situations it can be difficult to identify sensible options.

Option uncertainty is a fairly common feature in real-life decisions. As Bradley and Drechsler put it:

Option uncertainty is an endemic feature of decision making, for it is rarely the case that we can predict consequences of our actions in every detail (alternatively, be sure what our options are). And although in many decision situations, it won’t matter too much what the precise consequence of each action is, in some the details will matter very much.

…and unfortunately, the cases in which the details matter are precisely those problems in which they are the hardest to figure out – i.e. in wicked problems.

Preference uncertainty

An implicit assumption in the standard approach is that once states and consequences are known, people will be able to figure out their relative preferences for these unambiguously. This assumption is incorrect, as there are at least two situations in which people will not be able to determine their preferences. Firstly, there may be  a lack of factual information about one or more of the states. Secondly, even when one is able to get the required facts, it is hard to figure out how we would value the consequences.

A common example of the aforementioned situation is the job switch dilemma. In many (most?) cases in which one is debating whether or not to switch jobs, one lacks enough factual information about the new job – for example, the new boss’ temperament, the work environment etc. Further, even if one is able to get the required information, it is impossible to know how it would be to actually work there.  Most people would have struggled with this kind of uncertainty at some point in their lives. Bradley and Drechsler term this ethical uncertainty. I prefer the term preference uncertainty, as it has more to do with preferences than ethics.

Some general remarks

The first point to note is that the three types of uncertainty noted above map exactly on to the three shortcomings of classical decision theory discussed in the introduction.  This suggests a connection between the types of uncertainty and wicked problems. Indeed, most wicked problems are exemplars of one or more of the above uncertainty types.  For example, the paradigm-defining super-wicked problem of climate change displays all three types of uncertainty.

The three types of uncertainty discussed above are overlooked by the standard approach to managing uncertainty.  This happens in a number of ways. Here are two common ones:

  1. The standard approach assumes that all uncertainties can somehow be incorporated into a single probability function describing all possible states and/or consequences. This is clearly false for state space and option uncertainty: it is impossible to define a sensible probability function when one is uncertain about the possible states and/or outcomes.
  2. The standard approach assumes that preferences for different consequences are known. This is clearly not true in the case of preference uncertainty…and even for state space and option uncertainty for that matter.

In their paper, Bradley and Dreschsler arrive at these three types of uncertainty from considerations different from the ones I have used above. Their approach, while more general, is considerably more involved. Nevertheless, I would recommend that readers who are interested should take a look at it because they cover a lot of things that I have glossed over or ignored altogether.

Just as an example, they show how the aforementioned uncertainties can be reduced. There is a price to be paid, however: any reduction in uncertainty results in an increase in its severity. An example might help illustrate how this comes about. Consider a situation of state space uncertainty. One can reduce- or even, remove – this by defining a catch-all state (labelled, say, “all other outcomes”). It is easy to see that although one has formally reduced state space uncertainty to zero, one has increased the severity of the uncertainty because the catch-all state is but a reflection of our ignorance and our refusal to do anything about it!

There are many more implications of the above. However, I’ll point out just one more that serves to illustrate the very practical implications of these uncertainties. In a post on the shortcomings of enterprise risk management, I pointed out that the notion of an organisation-wide risk appetite is problematic because it is impossible to capture the diversity of viewpoints through such a construct. Moreover,  rule or process based approaches to risk management tend to focus only on those uncertainties that can be quantified, or conversely they assume that all uncertainties can somehow be clumped into a single probability distribution as prescribed by the standard approach to managing uncertainty. The three types of uncertainty discussed above highlight the limitations of such an approach to enterprise risk.

Conclusion

The standard approach to managing uncertainty assumes that all possible states, actions and consequences are known or can be determined. In this post I have discussed why this is not always so.  In particular, it often happens that we do not know all possible outcomes (state space uncertainty), consequences (option uncertainty) and/or our preferences for consequences (preference or ethical uncertainty).

As I was reading the paper, I felt the authors were articulating issues that I had often felt uneasy about but chose to overlook (suppress?).  Generalising from one’s own experience is always a fraught affair, but  I reckon we tend to deny these uncertainties because they are inconvenient – that is, they are difficult if not impossible to deal with within the procrustean framework of the standard approach.  What is needed as a corrective is a recognition that the pseudo-quantitative approach that is commonly used to manage uncertainty may not the panacea it is claimed to be. The first step towards doing this is to acknowledge the existence of the uncertainties that we (probably) overlook.

Written by K

February 25, 2015 at 9:08 pm

%d bloggers like this: