Archive for the ‘Estimation’ Category
Monte Carlo Simulation of Projects – an (even simpler) explainer
In this article I’ll explain how Monte Carlo simulation works using an example of a project that consists of two tasks that must be carried out sequentially as shown in the figure:

Task 1 takes 3 to 7 days
Task 2 takes 2 to 5 days
The two tasks do not have any dependencies other than that they need to be completed in sequence.
(Note: in case you’re wondering about “even simpler” bit in the title – the current piece is, I think, even easier to follow than this one I wrote up some years ago).
Assume the project has been carried a number of times in the past – say 20 times – and we have the data shown below for the two tasks. For each task, we have the frequency of completion by day. So, Task 1 was completed twice on day 3 , four times on day 4 and so on. Similarly, Task 2 was completed twice on the 2nd day after the task started and 10 times the 3rd day after the task started and so on.


Consider Task 1. Since it was completed 2 times on day 3 and 4 times on day 4, it is reasonable to assume that it twice as likely that it will finish on day 4 than on day 3. In other words, the number of times a task is completed on a particular day is proportional to the probability of finishing on that day.
One can therefore approximate the probability of finishing on a particular day by dividing the number of completions on that day by the total number of times the task was performed. So, for example, the probability of finishing task 1 on day 3 is 2/20 or 0.1 and the probability of finishing it on day 4 is 0.2.
It is straightforward to calculate the probability for each of the completion days. The tables displayed below show the calculated probabilities. The tables also show the cumulative probability – this is sum of all probabilities of completion prior to (and including) current completion day. This gives the probability of finishing by the particular day – that is, on that day or any day before it. This, rather than the probability, is typically what you want to know.


The cumulative probability has two useful properties
- It is an increasing function (that is, it increases as the completion day increases)
- It lies between 0 and 1
What this means is that if we pick any number between 0 and 1, we will be able to find the “completion day” corresponding to that number. Let’s try this for task one:
Say we pick 0.35. Since 0.35 lies between 0.3 and 0.75, it corresponds to a completion between day 4 and day 5. That is, the task will be completed by day 5. Indeed, any number picked between 0.3 and 0.75 will correspond to a completion by day 5.
Say we pick 0.79. Since 0.79 lies between 0.75 and 0.95, it corresponds to a completion between day 5 and day 6. That is, the task will be completed by day 6.
….and so on. It is easy to see that any random number between 0 and 1 corresponds to a specific completion day depending on which cumulative probability interval it lies in.
Let’s pick a thousand random numbers between 0 and 1 and find the corresponding completion days for each. It should be clear from what I have said so far that these correspond to 1000 simulations of task 1, consistent with the historical data that we have on the task.
We will do the simulations in Excel. You may want to download the workbook that accompanies this post and follow along.
Enter the completion days and the cumulative probabilities corresponding to them in rows 1 through 8 of columns A and B as shown below.

Then enter the Excel RAND() function in cell A10 as shown in the figure below. This generates a random number between 0 and 1 (note that the random number you generate will be different from mine).

Next, fill down to cell A1009 to generate 1000 random numbers between 0 and 1 – see figure below ( again your random numbers will be different from mine)

Now in cell B10, input the formula shown below:

This nested IF() function checks which cumulative probability interval the random number lies in and returns the corresponding completion day. This is the completed by day corresponding to the inputted probability.
Fill this down to cell B1009. Your first few rows will look something like shown in the figure below:

You have now simulated Task 1 thousand times.
Next, enter the data for task 2 in columns D and E (from rows 1 through 7) and follow a similar procedure to simulate Task 2 thousand times. When you’re done, you will have something like what’s shown below (again, your random numbers and hence your completed by days will differ from mine):

Each line from row 10 to 1009 corresponds to a simulation of the project. So, this is equivalent to running the project 1000 times.
We can get completion times for each simulation by summing columns B and E, which will give us 1000 project completion times. Let’s do this in column G.
Using the MIN() and MAX() functions over the range G10:G1009, we see that the earliest and latest days for project completion are day 5 and day 12 respectively.

Using the simulation results, we can now get approximate cumulative probabilities for each of the possible completion days (i.e days 5 through 12).
Pause for a minute and have a think about how you would do this.
–x–
OK, so here’s how you would do it for day 5
Count the number of 5s in the range G10:G1009 using the COUNTIF() function. To estimate the probability of completion on day 5, divide this number by the total number of simulations.
To get the cumulative probability you would need to add in the probabilities for all prior completion days. However, since day 5 is the earliest possible completion day, there is no prior day.
Let’s do day 6
Count the number of 6s in the range G10:G1009 using the COUNTIF() function. To estimate the probability of completion on day 6, divide this number by the total number of simulations.
To get the cumulative probability you would need to add the estimated probability of completion for day 5 to the estimated probability of completion for day 6.
…and so on.
The resulting table, show below, is excerpted from columns J and K of the Excel workbook linked to above. Your numbers will differ (but hopefully by not too much) from the ones shown in the table.

Now that we have done all this work, we can make statements like:
- It is highly unlikely that we will finish before day 7.
- There’s an 80% chance that we will finish by day 9.
- There’s a 95% chance we’ll finish by day 10.
…and so on.
And that’s how Monte Carlo simulations work in the context of project estimation
Before we close, a word or two about data. The method we have used here assumes that you have detailed historical completion data for the tasks. However, you probably know from experience that it is rarely the case that you have this.
What do you do then?
Well, one can develop probability distributions based on subjective probabilities. Here’s how: ask the task performer for a best guess earliest, most likely and latest completion time. Based on these, one can construct triangular probability distributions that can be used in simulations. It would take me far too long to explain the procedure here so I’ll point you to an article instead.
And that’s it for this explainer. I hope it has given you a sense for how Monte Carlo simulations work.
Three types of uncertainty you (probably) overlook
Introduction – uncertainty and decision-making
Managing uncertainty – deciding what to do in the absence of reliable information – is a significant part of project management and many other managerial roles. When put this way, it is clear that managing uncertainty is primarily a decision-making problem. Indeed, as I will discuss shortly, the main difficulties associated with decision-making are related to specific types of uncertainties that we tend to overlook.
Let’s begin by looking at the standard approach to decision-making, which goes as follows:
- Define the decision problem.
- Identify options.
- Develop criteria for rating options.
- Evaluate options against criteria.
- Select the top rated option.
As I have pointed out in this post, the above process is too simplistic for some of the complex, multifaceted decisions that we face in life and at work (switching jobs, buying a house or starting a business venture, for example). In such cases:
- It may be difficult to identify all options.
- It is often impossible to rate options meaningfully because of information asymmetry – we know more about some options than others. For example, when choosing whether or not to switch jobs, we know more about our current situation than the new one.
- Even when ratings are possible, different people will rate options differently – i.e. different people invariably have different preferences for a given outcome. This makes it difficult to reach a consensus.
Regular readers of this blog will know that the points listed above are characteristics of wicked problems. It is fair to say that in recent years, a general awareness of the ubiquity of wicked problems has led to an appreciation of the limits of classical decision theory. (That said, it should be noted that academics have been aware of this for a long time: Horst Rittel’s classic paper on the dilemmas of planning, written in 1973, is a good example. And there are many others that predate it.)
In this post I look into some hard-to-tackle aspects of uncertainty by focusing on the aforementioned shortcomings of classical decision theory. My discussion draws on a paper by Richard Bradley and Mareile Drechsler.
This article is organised as follows: I first present an overview of the standard approach to dealing with uncertainty and discuss its limitations. Following this, I elaborate on three types of uncertainty that are discussed in the paper.
Background – the standard view of uncertainty
The standard approach to tackling uncertainty was articulated by Leonard Savage in his classic text, Foundations of Statistics. Savage’s approach can be summarized as follows:
- Figure out all possible states (outcomes)
- Enumerate actions that are possible
- Figure out the consequences of actions for all possible states.
- Attach a value (aka preference) to each consequence
- Select the course of action that maximizes value (based on an appropriately defined measure, making sure to factor in the likelihood of achieving the desired consequence)
(Note the close parallels between this process and the standard approach to decision-making outlined earlier.)
To keep things concrete it is useful to see how this process would work in a simple real-life example. Bradley and Drechsler quote the following example from Savage’s book that does just that:
…[consider] someone who is cooking an omelet and has already broken five good eggs into a bowl, but is uncertain whether the sixth egg is good or rotten. In deciding whether to break the sixth egg into the bowl containing the first five eggs, to break it into a separate saucer, or to throw it away, the only question this agent has to grapple with is whether the last egg is good or rotten, for she knows both what the consequence of breaking the egg is in each eventuality and how desirable each consequence is. And in general it would seem that for Savage once the agent has settled the question of how probable each state of the world is, she can determine what to do simply by averaging the utilities (Note: utility is basically a mathematical expression of preference or value) of each action’s consequences by the probabilities of the states of the world in which they are realised…
In this example there are two states (egg is good, egg is rotten), three actions (break egg into bowl, break egg into separate saucer to check if it rotten, throw egg away without checking) and three consequences (spoil all eggs, save eggs in bowl and save all eggs if last egg is not rotten, save eggs in bowl and potentially waste last egg). The problem then boils down to figuring out our preferences for the options (in some quantitative way) and the probability of the two states. At first sight, Savage’s approach seems like a reasonable way to deal with uncertainty. However, a closer look reveals major problems.
Problems with the standard approach
Unlike the omelet example, in real life situations it is often difficult to enumerate all possible states or foresee all consequences of an action. Further, even if states and consequences are known, we may not what value to attach to them – that is, we may not be able to determine our preferences for those consequences unambiguously. Even in those situations where we can, our preferences for may be subject to change – witness the not uncommon situation where lottery winners end up wishing they’d never won. The standard prescription works therefore works only in situations where all states, actions and consequences are known – i.e. tame situations, as opposed to wicked ones.
Before going any further, I should mention that Savage was cognisant of the limitations of his approach. He pointed out that it works only in what he called small world situations– i.e. situations in which it is possible to enumerate and evaluate all options. As Bradley and Drechsler put it,
Savage was well aware that not all decision problems could be represented in a small world decision matrix. In Savage’s words, you are in a small world if you can “look before you leap”; that is, it is feasible to enumerate all contingencies and you know what the consequences of actions are. You are in a grand world when you must “cross the bridge when you come to it”, either because you are not sure what the possible states of the world, actions and/or consequences are…
In the following three sections I elaborate on the complications mentioned above emphasizing, once again, that many real life situations are prone to such complications.
State space uncertainty
The standard view of uncertainty assumes that all possible states are given as a part of the problem definition – as in the omelet example discussed earlier. In real life, however, this is often not the case.
Bradley and Drechsler identify two distinct cases of state space uncertainty. The first one is when we are unaware that we’re missing states and/or consequences. For example, organisations that embark on a restructuring program are so focused on the cost-related consequences that they may overlook factors such as loss of morale and/or loss of talent (and the consequent loss of productivity). The second, somewhat rarer, case is when we are aware that we might be missing something but we don’t quite know what it is. All one can do here, is make appropriate contingency plans based on guesses regarding possible consequences.
Figuring out possible states and consequences is largely a matter of scenario envisioning based on knowledge and practical experience. It stands to reason that this is best done by leveraging the collective experience and wisdom of people from diverse backgrounds. This is pretty much the rationale behind collective decision-making techniques such as Dialogue Mapping.
Option uncertainty
The standard approach to tackling uncertainty assumes that the connection between actions and consequences is well defined. This is often not the case, particularly for wicked problems. For example, as I have discussed in this post, enterprise transformation programs with well-defined and articulated objectives often end up having a host of unintended consequences. At an even more basic level, in some situations it can be difficult to identify sensible options.
Option uncertainty is a fairly common feature in real-life decisions. As Bradley and Drechsler put it:
Option uncertainty is an endemic feature of decision making, for it is rarely the case that we can predict consequences of our actions in every detail (alternatively, be sure what our options are). And although in many decision situations, it won’t matter too much what the precise consequence of each action is, in some the details will matter very much.
…and unfortunately, the cases in which the details matter are precisely those problems in which they are the hardest to figure out – i.e. in wicked problems.
Preference uncertainty
An implicit assumption in the standard approach is that once states and consequences are known, people will be able to figure out their relative preferences for these unambiguously. This assumption is incorrect, as there are at least two situations in which people will not be able to determine their preferences. Firstly, there may be a lack of factual information about one or more of the states. Secondly, even when one is able to get the required facts, it is hard to figure out how we would value the consequences.
A common example of the aforementioned situation is the job switch dilemma. In many (most?) cases in which one is debating whether or not to switch jobs, one lacks enough factual information about the new job – for example, the new boss’ temperament, the work environment etc. Further, even if one is able to get the required information, it is impossible to know how it would be to actually work there. Most people would have struggled with this kind of uncertainty at some point in their lives. Bradley and Drechsler term this ethical uncertainty. I prefer the term preference uncertainty, as it has more to do with preferences than ethics.
Some general remarks
The first point to note is that the three types of uncertainty noted above map exactly on to the three shortcomings of classical decision theory discussed in the introduction. This suggests a connection between the types of uncertainty and wicked problems. Indeed, most wicked problems are exemplars of one or more of the above uncertainty types. For example, the paradigm-defining super-wicked problem of climate change displays all three types of uncertainty.
The three types of uncertainty discussed above are overlooked by the standard approach to managing uncertainty. This happens in a number of ways. Here are two common ones:
- The standard approach assumes that all uncertainties can somehow be incorporated into a single probability function describing all possible states and/or consequences. This is clearly false for state space and option uncertainty: it is impossible to define a sensible probability function when one is uncertain about the possible states and/or outcomes.
- The standard approach assumes that preferences for different consequences are known. This is clearly not true in the case of preference uncertainty…and even for state space and option uncertainty for that matter.
In their paper, Bradley and Dreschsler arrive at these three types of uncertainty from considerations different from the ones I have used above. Their approach, while more general, is considerably more involved. Nevertheless, I would recommend that readers who are interested should take a look at it because they cover a lot of things that I have glossed over or ignored altogether.
Just as an example, they show how the aforementioned uncertainties can be reduced. There is a price to be paid, however: any reduction in uncertainty results in an increase in its severity. An example might help illustrate how this comes about. Consider a situation of state space uncertainty. One can reduce- or even, remove – this by defining a catch-all state (labelled, say, “all other outcomes”). It is easy to see that although one has formally reduced state space uncertainty to zero, one has increased the severity of the uncertainty because the catch-all state is but a reflection of our ignorance and our refusal to do anything about it!
There are many more implications of the above. However, I’ll point out just one more that serves to illustrate the very practical implications of these uncertainties. In a post on the shortcomings of enterprise risk management, I pointed out that the notion of an organisation-wide risk appetite is problematic because it is impossible to capture the diversity of viewpoints through such a construct. Moreover, rule or process based approaches to risk management tend to focus only on those uncertainties that can be quantified, or conversely they assume that all uncertainties can somehow be clumped into a single probability distribution as prescribed by the standard approach to managing uncertainty. The three types of uncertainty discussed above highlight the limitations of such an approach to enterprise risk.
Conclusion
The standard approach to managing uncertainty assumes that all possible states, actions and consequences are known or can be determined. In this post I have discussed why this is not always so. In particular, it often happens that we do not know all possible outcomes (state space uncertainty), consequences (option uncertainty) and/or our preferences for consequences (preference or ethical uncertainty).
As I was reading the paper, I felt the authors were articulating issues that I had often felt uneasy about but chose to overlook (suppress?). Generalising from one’s own experience is always a fraught affair, but I reckon we tend to deny these uncertainties because they are inconvenient – that is, they are difficult if not impossible to deal with within the procrustean framework of the standard approach. What is needed as a corrective is a recognition that the pseudo-quantitative approach that is commonly used to manage uncertainty may not the panacea it is claimed to be. The first step towards doing this is to acknowledge the existence of the uncertainties that we (probably) overlook.
The shape of things to come: an essay on probability in project estimation
Introduction
Project estimates are generally based on assumptions about future events and their outcomes. As the future is uncertain, the concept of probability is sometimes invoked in the estimation process. There’s enough been written about how probabilities can be used in developing estimates; indeed there are a good number of articles on this blog – see this post or this one, for example. However, most of these writings focus on the practical applications of probability rather than on the concept itself – what it means and how it should be interpreted. In this article I address the latter point in a way that will (hopefully!) be of interest to those working in project management and related areas.
Uncertainty is a shape, not a number
Since the future can unfold in a number of different ways one can describe it only in terms of a range of possible outcomes. A good way to explore the implications of this statement is through a simple estimation-related example:
Assume you’ve been asked to do a particular task relating to your area of expertise. From experience you know that this task usually takes 4 days to complete. If things go right, however, it could take as little as 2 days. On the other hand, if things go wrong it could take as long as 8 days. Therefore, your range of possible finish times (outcomes) is anywhere between 2 to 8 days.
Clearly, each of these outcomes is not equally likely. The most likely outcome is that you will finish the task in 4 days. Moreover, the likelihood of finishing in less than 2 days or more than 8 days is zero. If we plot the likelihood of completion against completion time, it would look something like Figure 1.
Figure 1 begs a couple of questions:
- What are the relative likelihoods of completion for all intermediate times – i.e. those between 2 to 4 days and 4 to 8 days?
- How can one quantify the likelihood of intermediate times? In other words, how can one get a numerical value of the likelihood for all times between 2 to 8 days? Note that we know from the earlier discussion that this must be zero for any time less than 2 or greater than 8 days.
The two questions are actually related: as we shall soon see, once we know the relative likelihood of completion at all times (compared to the maximum), we can work out its numerical value.
Since we don’t know anything about intermediate times (I’m assuming there is no historical data available, and I’ll have more to say about this later…), the simplest thing to do is to assume that the likelihood increases linearly (as a straight line) from 2 to 4 days and decreases in the same way from 4 to 8 days as shown in Figure 2. This gives us the well-known triangular distribution.
Note: The term distribution is simply a fancy word for a plot of likelihood vs. time.
Of course, this isn’t the only possibility; there are an infinite number of others. Figure 3 is another (admittedly weird) example.
Further, it is quite possible that the upper limit (8 days) is not a hard one. It may be that in exceptional cases the task could take much longer (say, if you call in sick for two weeks) or even not be completed at all (say, if you leave for that mythical greener pasture). Catering for the latter possibility, the shape of the likelihood might resemble Figure 4.
From the figures above, we see that uncertainties are shapes rather than single numbers, a notion popularised by Sam Savage in his book, The Flaw of Averages. Moreover, the “shape of things to come” depends on a host of factors, some of which may not even be on the radar when a future event is being estimated.
Making likelihood precise
Thus far, I have used the word “likelihood” without bothering to define it. It’s time to make the notion more precise. I’ll begin by asking the question: what common sense properties do we expect a quantitative measure of likelihood to have?
Consider the following:
- If an event is impossible, its likelihood should be zero.
- The sum of likelihoods of all possible events should equal complete certainty. That is, it should be a constant. As this constant can be anything, let us define it to be 1.
In terms of the example above, if we denote time by and the likelihood by
then:
for
and
And
where
Where denotes the sum of all non-zero likelihoods – i.e. those that lie between 2 and 8 days. In simple terms this is the area enclosed by the likelihood curves and the x axis in figures 2 to 4. (Technical Note: Since
is a continuous variable, this should be denoted by an integral rather than a simple sum, but this is a technicality that need not concern us here)
is , in fact, what mathematicians call probability– which explains why I have used the symbol
rather than
. Now that I’ve explained what it is, I’ll use the word “probability” instead of ” likelihood” in the remainder of this article.
With these assumptions in hand, we can now obtain numerical values for the probability of completion for all times between 2 and 8 days. This can be figured out by noting that the area under the probability curve (the triangle in figure 2 and the weird shape in figure 3) must equal 1. I won’t go into any further details here, but those interested in the maths for the triangular case may want to take a look at this post where the details have been worked out.
The meaning of it all
(Note: parts of this section borrow from my post on the interpretation of probability in project management)
So now we understand how uncertainty is actually a shape corresponding to a range of possible outcomes, each with their own probability of occurrence. Moreover, we also know, in principle, how the probability can be calculated for any valid value of time (between 2 and 8 days). Nevertheless, we are still left with the question as to what a numerical probability really means.
As a concrete case from the example above, what do we mean when we say that there is 100% chance (probability=1) of finishing within 8 days? Some possible interpretations of such a statement include:
- If the task is done many times over, it will always finish within 8 days. This is called the frequency interpretation of probability, and is the one most commonly described in maths and physics textbooks.
- It is believed that the task will definitely finish within 8 days. This is called the belief interpretation. Note that this interpretation hinges on subjective personal beliefs.
- Based on a comparison to similar tasks, the task will finish within 8 days. This is called the support interpretation.
Note that these interpretations are based on a paper by Glen Shafer. Other papers and textbooks frame these differently.
The first thing to note is how different these interpretations are from each other. For example, the first one offers a seemingly objective interpretation whereas the second one is unabashedly subjective.
So, which is the best – or most correct – one?
A person trained in science or mathematics might claim that the frequency interpretation wins hands down because it lays out an objective, well -defined procedure for calculating probability: simply perform the same task many times and note the completion times.
Problem is, in real life situations it is impossible to carry out exactly the same task over and over again. Sure, it may be possible to do almost the same task, but even straightforward tasks such as vacuuming a room or baking a cake can hold hidden surprise (vacuum cleaners do malfunction and a friend may call when one is mixing the batter for a cake). Moreover, tasks that are complex (as is often the case in the project work) tend to be unique and can never be performed in exactly the same way twice. Consequently, the frequency interpretation is great in theory but not much use in practice.
“That’s OK,” another estimator might say,” when drawing up an estimate, I compared it to other similar tasks that I have done before.”
This is essentially the support interpretation (interpretation 3 above). However, although this seems reasonable, there is a problem: tasks that are superficially similar will differ in the details, and these small differences may turn out to be significant when one is actually carrying out the task. One never knows beforehand which variables are important. For example, my ability to finish a particular task within a stated time depends not only on my skill but also on things such as my workload, stress levels and even my state of mind. There are many external factors that one might not even recognize as being significant. This is a manifestation of the reference class problem.
So where does that leave us? Is probability just a matter of subjective belief?
No, not quite: in reality, estimators will use some or all of three interpretations to arrive at “best guess” probabilities. For example, when estimating a project task, a person will likely use one or more of the following pieces of information:
- Experience with similar tasks.
- Subjective belief regarding task complexity and potential problems. Also, their “gut feeling” of how long they think it ought to take. These factors often drive excess time or padding that people work into their estimates.
- Any relevant historical data (if available)
Clearly, depending on the situation at hand, estimators may be forced to rely on one piece of information more than others. However, when called upon to defend their estimates, estimators may use other arguments to justify their conclusions depending on who they are talking to. For example, in discussions involving managers, they may use hard data presented in a way that supports their estimates, whereas when talking to their peers they may emphasise their gut feeling based on differences between the task at hand and similar ones they have done in the past. Such contradictory representations tend to obscure the means by which the estimates were actually made.
Summing up
Estimates are invariably made in the face of uncertainty. One way to get a handle on this is by estimating the probabilities associated with possible outcomes. Probabilities can be reckoned in a number of different ways. Clearly, when using them in estimation, it is crucial to understand how probabilities have been derived and the assumptions underlying these. We have seen three ways in which probabilities are interpreted corresponding to three different ways in which they are arrived at. In reality, estimators may use a mix of the three approaches so it isn’t always clear how the numerical value should be interpreted. Nevertheless, an awareness of what probability is and its different interpretations may help managers ask the right questions to better understand the estimates made by their teams.