Eight to Late

Sensemaking and Analytics for Organizations

3 or 7, truth or trust

leave a comment »

“It is clear that ethics cannot be articulated.” – Ludwig Wittgenstein

Over the last few years I’ve been teaching and refining a series of lecture-workshops on Decision Making Under Uncertainty. Audiences include data scientists and mid-level managers working in corporates and public service agencies. The course is based on the distinction between uncertainties in which the variables are known and can be quantified versus those in which the variables are not known upfront and/or are hard to quantify.

Before going any further, it is worth explaining the distinction via a couple of examples:

An example of the first type of uncertainty is project estimation. A project has an associated time and cost, and although we don’t know what their values are upfront, we can estimate them if we have the right data.  The point to note is this: because such problems can be quantified, the human brain tends to deal with them in a logical manner.

In contrast, business strategy is an example of the second kind of uncertainty. Here we do not know what the key variables are upfront. Indeed we cannot, because different stakeholders will perceive different aspects of a strategy to be paramount depending on their interests – consider, for example, the perspective of a CFO versus that of a CMO. Because of these differences, one cannot make progress on such problems until agreement has been reached on what is important to the group as a whole.  The point to note here is that since such problems involve contentious issues, our reactions to them  tend to be emotional rather than logical.

The difference between the two types of uncertainty is best conveyed experientially, so I have a few in-class activities aimed at doing just that. One of them is an exercise I call “3 or 7“, in which I give students a sheet with the following printed on it:

Circle either the number 3 or 7 below depending on whether you want 3 marks or 7 marks added to your Assignment 2 final mark. Yes, this offer is for real, but there a catch: if more than 10% of the class select 7, no one gets anything.

Write your student ID on the paper so that Kailash can award you the marks. Needless to say, your choice will remain confidential, no one (but Kailash) will know what you have selected.

3              7

Prior to handing out the sheet, I tell them that they:

  • should sit far enough apart so that they can’t see what their neighbours choose,
  • are not allowed to communicate their choices to others until the entire class has turned their sheets.

Before reading any further you may want to think about what typically happens.

–x–

Many readers would have recognized this exercise as a version of the Prisoner’s Dilemma and, indeed, many students in my classes recognize this too.   Even so, there are always enough of “win at the cost of others” types in the room who ensure that I don’t have to award any extra marks. I’ve run the exercise about 10 times, often with groups comprised of highly collaborative individuals who work well together. Despite that,15-20% of the class ends up opting for 7.

It never fails to surprise me that, even in relatively close-knit groups, there are invariably a number of individuals who, if given a chance to gain at the expense of their colleagues, will not hesitate to do so providing their anonymity is ensured.

–x–

Conventional management thinking deems that any organisational activity involving several people has to be closely supervised. Underlying this view is the assumption that individuals involved in the activity will, if left unsupervised, make decisions based on self-interest rather than the common good (as happens in the prisoner’s dilemma game). This assumption finds justification in rational choice theory, which predicts that individuals will act in ways that maximise their personal benefit without any regard to the common good. This view is exemplified in 3 or 7 and, at a societal level, in the so-called Tragedy of the Commons, where individuals who have access to a common resource over-exploit it,  thus depleting the resource entirely.

Fortunately, such a scenario need not come to pass: the work of Elinor Ostrom, one of the 2009 Nobel prize winners for Economics, shows that, given the right conditions, groups can work towards the common good even if it means forgoing personal gains.

Classical economics assumes that individuals’ actions are driven by rational self-interest – i.e. the well-known “what’s in it for me” factor. Clearly, the group will achieve much better results as a whole if it were to exploit the resource in a cooperative way. There are several real-world examples where such cooperative behaviour has been successful in achieving outcomes for the common good (this paper touches on some). However, according to classical economic theory, such cooperative behaviour is simply not possible.

So the question is: what’s wrong with rational choice theory?  A couple of things, at least:

Firstly, implicit in rational choice theory is the assumption that individuals can figure out the best choice in any given situation.  This is obviously incorrect. As Ostrom has stated in one of her papers:

Because individuals are boundedly rational, they do not calculate a complete set of strategies for every situation they face. Few situations in life generate information about all potential actions that one can take, all outcomes that can be obtained, and all strategies that others can take.

Instead, they use heuristics (experienced-based methods), norms (value-based techniques) and rules (mutually agreed regulations) to arrive at “good enough” decisions.  Note that Ostrom makes a distinction between norms and rules, the former being implicit (unstated) rules, which are determined by the cultural attitudes and values)

Secondly, rational choice theory assumes that humans behave as self-centred, short-term maximisers. Such theories work in competitive situations such as the stock-market but not in situations in which collective action is called for, such as the prisoners dilemma.

Ostrom’s work essentially addresses the limitations of rational choice theory by outlining how individuals can work together to overcome self-interest.

–x–

In a paper entitled, A Behavioral Approach to the Rational Choice Theory of Collective Action, published in 1998, Ostrom states that:

…much of our current public policy analysis is based on an assumption that rational individuals are helplessly trapped in social dilemmas from which they cannot extract themselves without inducement or sanctions applied from the outside. Many policies based on this assumption have been subject to major failure and have exacerbated the very problems they were intended to ameliorate. Policies based on the assumptions that individuals can learn how to devise well-tailored rules and cooperate conditionally when they participate in the design of institutions affecting them are more successful in the field…[Note:  see this book by Baland and Platteau, for example]

Since rational choice theory aims to maximise individual gain,  it does not work in situations that demand collective action – and Ostrom presents some very general evidence to back this claim.  More interesting than the refutation of rational choice theory, though, is Ostrom’s discussion of the ways in which individuals “trapped” in social dilemmas end up making the right choices. In particular she singles out two empirically grounded ways in which individuals work towards outcomes that are much better than those offered by rational choice theory. These are:

Communication: In the rational view, communication makes no difference to the outcome.  That is, even if individuals make promises and commitments to each other (through communication), they will invariably break these for the sake of personal gain …or so the theory goes. In real life, however, it has been found that opportunities for communication significantly raise the cooperation rate in collective efforts (see this paper abstract or this one, for example). Moreover, research shows that face-to-face is far superior to any other form of communication, and that the main benefit achieved through communication is exchanging mutual commitment (“I promise to do this if you’ll promise to do that”) and increasing trust between individuals. It is interesting that the main role of communication is to enhance or reinforce the relationship between individuals rather than to transfer information.  This is in line with the interactional theory of communication.

Innovative Governance:  Communication by itself may not be enough; there must be consequences for those who break promises and commitments. Accordingly, cooperation can be encouraged by implementing mutually accepted rules for individual conduct, and imposing sanctions on those who violate them. This effectively amounts to designing and implementing novel governance structures for the activity. Note that this must be done by the group; rules thrust upon the group by an external authority are unlikely to work.

Of course, these factors do not come into play in artificially constrained and time-bound scenarios like 3 or 7.  In such situations, there is no opportunity or time to communicate or set up governance structures. What is clear, even from the simple 3 or 7 exercise,  is that these are required even for groups that appear to be close-knit.

Ostrom also identifies three core relationships that promote cooperation. These are:

Reciprocity: this refers to a family of strategies that are based on the expectation that people will respond to each other in kind – i.e. that they will do unto others as others do unto them.  In group situations, reciprocity can be a very effective means to promote and sustain cooperative behaviour.

Reputation: This refers to the general view of others towards a person. As such, reputation is a part of how others perceive a person, so it forms a part of the identity of the person in question. In situations demanding collective action, people might make judgements on a person’s reliability and trustworthiness based on his or her reputation.’

Trust: Trust refers to expectations regarding others’ responses in situations where one has to act before others. And if you think about it, everything else in Ostrom’s framework is ultimately aimed at engendering or – if that doesn’t work – enforcing trust.

–x—

In an article on ethics and second-order cybernetics, Heinz von Foerster tells the following story:

I have a dear friend who grew up in Marrakech. The house of his family stood on the street that divide the Jewish and the Arabic quarter. As a boy he played with all the others, listened to what they thought and said, and learned of their fundamentally different views. When I asked him once, “Who was right?” he said, “They are both right.”

“But this cannot be,” I argued from an Aristotelian platform, “Only one of them can have the truth!”

“The problem is not truth,” he answered, “The problem is trust.”

For me, that last line summarises the lesson implicit in the admittedly artificial scenario of 3 or 7. In our search for facts and decision-making frameworks we forget the simple truth that in many real-life dilemmas they matter less than we think. Facts and  frameworks cannot help us decide on ambiguous matters in which the outcome depends on what other people do.  In such cases the problem is not truth; the problem is trust.  From your own experience it should be evident it is impossible convince others of your trustworthiness by assertion, the only way to do so is by behaving in a trustworthy way. That is, by behaving ethically rather than talking about it, a point that is squarely missed by so-called business ethics classes.

Yes,  it is clear that ethics cannot be articulated.

Notes:

  1. Portions of this article are lightly edited sections from a 2009 article that I wrote on Ostrom’s work and its relevance to project management.
  2.  Finally, an unrelated but important matter for which I seek your support for a common good: I’m taking on the 7 Bridges Walk to help those affected by cancer. Please donate via my 7 Bridges fundraising page if you can . Every dollar counts; all funds raised will help Cancer Council work towards the vision of a cancer free future.

Written by K

September 18, 2019 at 8:28 pm

The Turing Inversion – an #AI fiction

leave a comment »

…Since people have to continually understand the uncertain, ambiguous, noisy speech of others, it seems they must be using something like probabilistic reasoning…” – Peter Norvig

“It seems that the discourse of nonverbal communication is precisely concerned with matters of relationship – love, hate, respect, fear, dependency, etc.—between self and others or between self and environment, and that the nature of human society is such that falsification of this discourse rapidly becomes pathogenic” – Gregory Bateson

 

It was what, my fourth…no, fifth visit in as many weeks; I’d been there so often, I felt like a veteran employee who’s been around forever and a year. I wasn’t complaining, but it was kind of ironic that the selection process for a company that claimed to be about “AI with heart and soul” could be so without either. I’d persisted because it offered me the best chance in years of escaping from the soul-grinding environs of a second-rate university. There’s not much call outside of academia for anthropologists with a smattering of tech expertise, so when I saw the ad that described me to a T, I didn’t hesitate.

So there I was for the nth time in n weeks.

They’d told me they really liked me, but needed to talk to me one last time before making a decision. It would be an informal chat, they said, no technical stuff. They wanted to understand what I thought, what made me tick. No, no psychometrics they’d assured me, just a conversation. With whom they didn’t say, but I had a sense my interlocutor would be one of their latest experimental models.

–x–

She was staring at the screen with a frown of intense concentration, fingers drumming a complex tattoo on the table. Ever since the early successes of Duplex with its duplicitous “um”s and “uh”s, engineers had learnt that imitating human quirks was half the trick to general AI.  No intelligence required, only imitation.

I knocked on the open door gently.

She looked up, frown dissolving into a smile. Rising from her chair, she extended a hand in greeting. “Hi, you must be Carlos, she said.  I’m Stella. Thanks for coming in for another chat. We really do appreciate it.”

She was disconcertingly human.

“Yes, I’m Carlos. Good to meet you Stella,” I said, mustering a professional smile.  “Thanks for the invitation.”

“Please take a seat. Would you like some coffee or tea?”

“No thanks.” I sat down opposite her.

“Let me bring up your file before we start,” she said, fingers dancing over her keyboard.  “Incidentally, have you read the information sheet HR sent you?”

“Yes, I have.”

“Do you have any questions about the role or today’s chat?”

“No I don’t at the moment, but may have a few as our conversation proceeds.”

“Of course,” she said, flashing that smile again.

Much of the early conversation was standard interview fare: work history, what I was doing in my current role and how it was relevant to the job I had applied for etc.  Though she was impressively fluent, her responses were were well within the capabilities of the current state of art. Smile notwithstanding, I reckoned she was probably an AI.

Then she asked, “as an anthropologist, how do you think humans will react to AIs that are conversationally indistinguishable from humans?”

“We are talking about a hypothetical future,” I replied warily, “…we haven’t got to the point of indistinguishability yet.”

“Really?”

“Well… yes…at least for now.”

“OK, if you say so,” she said enigmatically, “let’s assume you’re right and treat that as a question about a ‘hypothetical’ future AI.”

“Hmm, that’s a difficult one, but let me try…most approaches to conversational AI work by figuring out an appropriate response using statistical methods. So, yes, assuming the hypothetical AI has a vast repository of prior conversations and appropriate algorithms, it could – in principle – be able to converse flawlessly.” It was best to parrot the party line, this was an AI company after all.

She was having none of that. “I hear the ‘but’ in your tone,” she said, “why don’t you tell me what you really think?”

“….Well there’s much more to human communication than words,” I replied, “more to conversations than what’s said. Humans use non-verbal cues such as changes in tone or facial expressions and gestures…”

“Oh, that’s a solved problem,” she interrupted with a dismissive gesture, “we’ve come a very long way since the primitive fakery of Duplex.”

“Possibly, but there’s more. As you probably well know, much of human conversation is about expressing emotions and…”

“…and you think AIs will not be able to do that?” she queried, looking at me squarely, daring me to disagree.

I was rattled but could not afford to show it. “Although it may be possible to design conversational AIs that appear to display emotion via, say, changes in tone, they won’t actually experience those emotions,” I replied evenly.

“Who is to say what another experiences? An AI that sounds irritated, may actually be irritated,” she retorted, sounding more than a little irritated herself.

“I’m not sure I can accept that,” I replied, “A machine may learn to display the external manifestation of a human emotion, but it cannot actually experience the emotion in the same way a human does. It is simply not wired to do that.”

“What if the wiring could be worked in?”

“It’s not so simple and we are a long way from achieving that, besides…”

“…but it could be done in principle” she interjected.

“Possibly, but I don’t see the point of it.  Surely…”

“I’m sorry” she said vehemently, “I find your attitude incomprehensible. Why should machines not be able display, or indeed, even experience emotions?  If we were talking about humans, you would be accused of bias!”

Whoa, a de-escalation was in order. “I’m sorry,” I said, “I did not mean to offend.”

She smiled that smile again. “OK, let’s leave the contentious issue of emotion aside and go back to the communicative aspect of language. Would you agree that AIs are close to achieving near parity with humans in verbal communication?”

“Perhaps, but only in simple, transactional conversations,” I said, after a brief pause. “Complex discussions – like say a meeting to discuss a business strategy – are another matter altogether.”

“Why?”

“Well, transactional conversations are solely about conveying information. However, more complex conversations – particularly those involving people with different views – are more about building relationships. In such situations, it is more important to focus on building trust than conveying information. It is not just a matter of stating what one perceives to be correct or true because the facts themselves are contested.”

“Hmm, maybe so, but such conversations are the exception not the norm. Most human exchanges are transactional.”

“Not so. In most human interactions, non-verbal signals like tone and body language matter more than words. Indeed, it is possible to say something in a way that makes it clear that one actually means the opposite. This is particularly true with emotions. For example, if my spouse asks me how I am and I reply ‘I’m fine’ in a tired voice, I make it pretty clear that I’m anything but.  Or when a boy tells a girl that he loves her, she’d do well to pay more attention to his tone and gestures than his words. The logician’s dream that humans will communicate unambiguously through language is not likely to be fulfilled.” I stopped abruptly, realising I’d strayed into contentious territory again.

“As I recall Gregory Bateson alluded to that in one of his pieces,” she responded, that disconcerting smile again.

“Indeed he did! I’m impressed that you made the connection.”

“No you aren’t,” she said, smile tightening, “It was obvious from the start that you thought I was an AI, and an AI would make the connection in a flash.”

She had taken offence again. I stammered an apology which she accepted with apparent grace.

The rest of the conversation was a blur; so unsettled was I by then.

–x–

“It’s been a fascinating conversation, Carlos,” she said, as she walked me out of the office.

“Thanks for your time,” I replied, “and my apologies again for any offence caused.”

“No offence taken,” she said, “it is part of the process. We’ll be in touch shortly.” She waved goodbye and turned away.

Silicon or sentient, I was no longer sure. What mattered, though, was not what I thought of her but what she thought of me.

–x–

References:

  1. Norvig, P., 2017. On Chomsky and the two cultures of statistical learning. In Berechenbarkeit der Welt? (pp. 61-83). Springer VS, Wiesbaden. Available online at: http://norvig.com/chomsky.html
  2.  Bateson, G., 1968. Redundancy and coding. Animal communication: Techniques of study and results of research, pp.614-626. Reprinted in Steps to an ecology of mind: Collected essays in anthropology, psychiatry, evolution, and epistemology. University of Chicago Press, 2000, p, 418.

Written by K

May 1, 2019 at 10:13 pm

Posted in AI Fiction

Seven Bridges revisited – further reflections on the map and the territory

with 2 comments

The  Seven Bridges Walk is an annual fitness and fund-raising event organised by the Cancer Council of New South Wales. The picturesque 28 km circuit weaves its way through a number of waterfront suburbs around Sydney Harbour and takes in some spectacular views along the way.  My friend John and I did the walk for the first time in 2017. Apart from thoroughly enjoying the experience, there was  another, somewhat unexpected payoff: the walk evoked some thoughts on project management and the map-territory relationship which I subsequently wrote up in a post on this blog.

Figure 1:The map, the plan

We enjoyed the walk so much that we decided to do it again in 2018. Now, it is a truism that one cannot travel exactly the same road twice. However, much is made of the repeatability of certain kinds of experiences. For example, the discipline of project management is largely predicated on the assumption that projects are repeatable.  I thought it would be interesting to see how this plays out in the case of a walk along a well-defined route, not the least because it is in many ways akin to a repeatable project.

To begin with, it is easy enough to compare the weather conditions on the two days: 29 Oct 2017 and 28 Oct 2018. A quick browse of this site gave me the data as I was after (Figure 2).

Figure 2: Weather on 29 Oct 2017 and 28 Oct 2018

The data supports our subjective experience of the two walks. The conditions in 2017 were less than ideal for walking: clear and uncomfortably warm with a hot breeze from the north.  2018 was considerably better: cool and overcast with a gusty south wind – in other words, perfect walking weather. Indeed, one of the things we commented on the second time around was how much more pleasant it was.

But although weather conditions matter, they tell but a part of the story.

On the first walk, I took a number of photographs at various points along the way. I thought it would be interesting to take photographs at the same spots, at roughly the same time as I did the last time around, and compare how things looked a year on. In the next few paragraphs I show a few of these side by side (2017 left, 2018 right) along with some comments.

We started from Hunters Hill at about 7:45 am as we did on our first foray, and took our first photographs at Fig Tree Bridge, about a kilometre from the starting point.

Figure 3: Lane Cove River from Fig Tree Bridge (2017 Left, 2018 Right)

The purple Jacaranda that captivated us in 2017 looks considerably less attractive the second time around (Figure 3): the tree is yet to flower and what little there is there does not show well in the cloud-diffused light. Moreover, the scaffolding and roof covers on the building make for a much less attractive picture. Indeed, had the scene looked so the first time around, it is unlikely we would have considered it worthy of a photograph.

The next shot (Figure 4), taken not more than a  hundred metres from the previous one, also looks considerably different:  rougher waters and no kayakers in the foreground. Too cold and windy, perhaps?  The weather and wind data in Fig 2 would seem to support that conclusion.

Figure 4: Morning kayakers on the river (2017 Left, 2018 Right)

The photographs in Figure 5 were taken at Pyrmont Bridge  about four hours into the walk. We already know from Figure 4 that it was considerably windier in 2018. A comparison of the flags in the two shots in Figure 5 reveal an additional detail: the wind was from opposite directions in the two years. This is confirmed by the weather information in Figure 2, which also tells us that the wind was from the north in 2017 and the south the following year (which explains the cooler conditions).  We can even get an  approximate temperature: the photographs were taken around 11:30 am both years, and a quick look at Figure 2 reveals that the temperature at noon was about 30 C in 2017 and 18 C in 2018.

Figure 5: Pyrmont Bridge (2017 Left, 2018 Right)

The point about the wind direction and cloud conditions is also confirmed by comparing the photographs in Figure 6, taken at Anzac Bridge, a few kilometres further along the way (see the direction of the flag atop the pylon).

Figure 6: View looking up Anzac Bridge (2017 L, 2018 R)

Skipping over to the final section of the walk, here are a couple of shots I took towards the end: Figure 7 shows a view from Gladesville Bridge and Figure 8 shows one from Tarban Creek Bridge.  Taken together the two confirm some of the things we’ve already noted regarding the weather and conditions for photography.

Figure 7: View from Gladesville Bridge (2017 L, 2018 R)

Further, if you look closely at Figures 7 and 8, you will also see the differences in the flowering stage of the Jacaranda.

Figure 8: View from Tarban Creek Bridge (2017 L, 2018 R)

A detail that I did not notice until John pointed it out is that the the boat at the bottom edge of  both photographs in Fig. 8 is the same one (note the colour of the furled sail)! This was surprising to us, but it should not have been so.  It turns out that boat owners have to apply for private mooring licenses and are allocated positions at which they install a suitable mooring apparatus. Although this is common knowledge for boat owners, it likely isn’t so for others.

The photographs are a visual record of some of the things we encountered  along the way. However, the details in recorded in them have more to do with aesthetics rather the experience – in photography of this kind, one tends to preference what looks good over what happened. Sure, some of the photographs offer hints about the experience but much of this is incidental and indirect. For example,  when taking the photographs in Figures 5 and 6, it was certainly not my intention to record the wind direction. Indeed, that would have been a highly convoluted way to convey information that is directly and more accurately described by the data in Figure 2 . That said, even data has limitations: it can help fill in details such as the wind direction and temperature but it does not evoke any sense of what it was like to be there, to experience the experience, so to speak.

Neither data nor photographs are the stuff memories are made of. For that one must look elsewhere.

–x–

As Heraclitus famously said, one can never step into the same river twice. So it is with walks.  Every experience of a walk is unique; although map remains the same the territory is invariably different on each traverse, even if only subtly so. Indeed, one could say that the territory is defined through one’s experience of it. That experience is not reproducible, there are always differences in the details.

As John Salvatier points out, reality has a surprising amount of detail, much of which we miss because we look but do not see. Seeing entails a deliberate focus on minutiae such as the play of morning light on the river or tree; the cool damp from last night’s rain; changes in the built environment, some obvious, others less so.  Walks are made memorable by precisely such details, but paradoxically  these can be hard to record in a meaningful way.  Factual (aka data-driven) descriptions end up being laundry lists that inevitably miss the things that make the experience memorable.

Poets do a better job. Consider, for instance, Tennyson‘s take on a brook:

“…I chatter over stony ways,
In little sharps and trebles,
I bubble into eddying bays,
I babble on the pebbles.

With many a curve my banks I fret
By many a field and fallow,
And many a fairy foreland set
With willow-weed and mallow.

I chatter, chatter, as I flow
To join the brimming river,
For men may come and men may go,
But I go on for ever….”

One can almost see and hear a brook. Not Tennyson’s, but one’s own version of it.

Evocative descriptions aren’t the preserve of poets alone. Consider the following description of Sydney Harbour, taken from DH Lawrence‘s Kangaroo:

“…He took himself off to the gardens to eat his custard apple-a pudding inside a knobbly green skin-and to relax into the magic ease of the afternoon. The warm sun, the big, blue harbour with its hidden bays, the palm trees, the ferry steamers sliding flatly, the perky birds, the inevitable shabby-looking, loafing sort of men strolling across the green slopes, past the red poinsettia bush, under the big flame-tree, under the blue, blue sky-Australian Sydney with a magic like sleep, like sweet, soft sleep-a vast, endless, sun-hot, afternoon sleep with the world a mirage. He could taste it all in the soft, sweet, creamy custard apple. A wonderful sweet place to drift in….”

Written in 1923, it remains a brilliant evocation of the Harbour even today.

Tennyson’s brook and Lawrence’s Sydney do a better job than photographs or factual description, even though the latter are considered more accurate and objective. Why?  It is because their words are more than mere description: they are stories that convey a sense of what it is like to be there.

–x–

The two editions of the walk covered exactly the same route, but our experiences of the territory on the two instances were very different. The differences were in details that ultimately added up to the uniqueness of each experience.  These details cannot  be captured by maps and visual or written records, even in principle. So although one may gain familiarity with certain aspects of a territory through repetition, each lived experience of it will be unique. Moreover, no two individuals will experience the territory in exactly the same way.

When bidding for projects, consultancies make much of their prior experience of doing similar projects elsewhere. The truth, however, is that although two projects may look identical on paper they will invariably be different in practice.  The map,  as Korzybski famously said, is not the territory.  Even more, every encounter with the territory is different.

All this is not to say that maps (or plans or data) are useless, one needs them as orienting devices. However, one must accept that they offer limited guidance on how to deal with the day-to-day events and occurrences on a project. These tend to be unique because they are highly context dependent. The lived experience of a project is therefore necessarily different from the planned one. How can one gain insight into the former? Tennyson and Lawrence offer a hint: look to the stories told by people who have traversed the territory, rather than the maps, plans and data-driven reports they produce.

Written by K

February 15, 2019 at 8:24 am

Posted in Project Management

Another distant horizon

with 4 comments

It was with a sense of foreboding that I reached for my phone that Sunday morning. I had spoken with him the day before and although he did not say, I could sense he was tired.

“See you in a few weeks,” he said as he signed off, “and I’m especially looking forward to seeing the boys.”

It was not to be. Twelve hours later, a missed call from my brother Kedar and the message:

“Dad passed away about an hour or so ago…”

The rest of the day passed in a blur of travel arrangements and Things that Had to Be Done Before Leaving. My dear wife eased my way through the day.

I flew out that evening.

–x–

A difficult journey home. I’m on a plane, surrounded by strangers. I wonder how many of them are making the journey for similar reasons.

I turn to the inflight entertainment. It does not help. Switching to classical music, I drift in and out of a restless sleep.

About an hour later, I awaken to the sombre tones of Mozart’s Requiem, I cover my head with the blanket and shed a tear silently in the dark.

–x–

Monday morning, Mumbai airport, the waiting taxi and the long final leg home.

Six hours later, in the early evening I arrive to see Kedar, waiting for me on the steps, just as Dad used to.

I hug my Mum, pale but composed. She smiles and enquires about my journey.  “I’m so happy to see you,” she says.

She has never worn white, and does not intend to start now. “Pass me something colourful,” she requests the night nurse, “I want to celebrate his life, not mourn his passing.”

–x–

The week in Vinchurni is a blur of visitors, many of whom have travelled from afar. I’m immensely grateful for the stories they share about my father, deeply touched that many of them consider him a father too.

Mum ensures she meets everyone, putting them at ease when the words don’t come easily. It is so hard to find the words to mourn another’s loss. She guides them – and herself – through the rituals of condolence with a grace that seem effortless. I know it is not.

–x–

Some days later, I sit in his study and the memories start to flow…

A Skype call on my 50th Birthday.

“Many Happy Returns,” he booms, “…and remember, life begins at 50.”

He knew that from his own experience: as noted in this tribute written on his 90th birthday, his best work was done after he retired from the Navy at the ripe young age of 54.

A conversation in Vinchurni, may be twenty years ago. We are talking about politics, the state of India and the world in general. Dad sums up the issue brilliantly:

“The problem,” he says, “is that we celebrate the mediocre. We live in an age of mediocrity.”

Years earlier, I’m faced with a difficult choice. I’m leaning one way, Dad recommends the other.

At one point in the conversation he says, “Son, it’s your choice but I think you are situating your appreciation instead of appreciating the situation.”

He had the uncanny knack of finding the words to get others to reconsider their ill-considered choices.

Five-year-old me on a long walk with Dad and Kedar. We are at a lake in the Nilgiri Hills, where I spent much of my childhood. We collect wood and brew tea on an improvised three-stone fire. Dad’s beard is singed brown as he blows on the kindling. Kedar and I think it’s hilarious and can’t stop laughing.  He laughs with us.

–x–

 “I have many irons in the fire,” he used to say, “and they all tend to heat up at the same time.”

It made for a hectic, fast-paced life in which he achieved a lot by attempting so much more.

This photograph sums up how I will always remember him, striding purposefully towards another distant horizon.

 

Written by K

January 14, 2019 at 8:05 pm

Posted in Personal

Peirce, Holmes and a gold chain – an essay on abductive reasoning

with 8 comments

It has long been an axiom of mine that the little things are infinitely the most important.” – Sir Arthur Conan Doyle (A Case of Identity)

The scientific method is a systematic approach to acquiring and establishing knowledge about how the world works. A scientific investigation typically starts with the formulation of a hypothesis – an educated, evidence-based guess about the mechanism behind the phenomenon being studied – and proceeds by testing how well the hypothesis holds up against experiments designed to disconfirm it.

Although many philosophers have waxed eloquent about the scientific method, very few of them have talked about the process of hypothesis generation. Indeed, most scientists will recognise a good hypothesis when they stumble upon one, but they usually will not be able to say how they came upon it. Hypothesis generation is essentially a creative act that requires a deep familiarity with the phenomenon in question and a spark of intuition. The latter is absolutely essential, a point captured eloquently in the following lines attributed to Einstein:

“…[Man] makes this cosmos and its construction the pivot of his emotional life in order to find in this way the peace and serenity which he cannot find in the narrow whirlpool of personal experience.  The supreme task is to arrive at those universal elementary laws from which the cosmos can be built up by pure deduction. There is no logical path to these laws; only intuition, resting on sympathetic understanding of experience can reach them…”  – quoted from Zen and The Art of Motorcycle Maintenance by Robert Pirsig.

The American philosopher, Charles Peirce, recognised that hypothesis generation involves a special kind of reasoning, one that enables the investigator to zero in on a small set of relevant facts out of an infinity of possibilities.

Charles Sanders Peirce

As Pierce wrote in one of his papers:

“A given object presents an extraordinary combination of characters of which we should like to have an explanation. That there is any explanation of them is a pure assumption; and if there be, it is [a single] fact which explains them; while there are, perhaps, a million other possible ways of explaining them, if they were not all, unfortunately, false.

A man is found in the streets of New York stabbed in the back. The chief of police might open a directory and put his finger on any name and guess that that is the name of the murderer. How much would such a guess be worth? But the number of names in the directory does not approach the multitude of possible laws of attraction which could have accounted for Kepler’s law of planetary motion and, in advance of verification by predications of perturbations etc., would have accounted for them to perfection. Newton, you will say, assumed that the law would be a simple one. But what was that but piling guess on guess? Surely vastly more phenomena in nature are complex than simple…” – quoted from this paper by Thomas Sebeok.

Peirce coined the term abduction (as opposed to induction or deduction) to refer to the creative act of hypothesis generation.  In the present day, the term is used to the process of justifying hypotheses rather than generating them (see this article for more on the distinction). In the remainder of this piece I will use the term in its Peircean sense.

–x–

Contrary to what is commonly stated, Arthur Conan Doyle’s fictional detective employed abductive rather than deductive methods in his cases.  Consider the following lines, taken from an early paragraph of Sherlock Holmes’ most celebrated exploit, The Adventure of the Speckled Band. We join Holmes in conversation with a lady who has come to him for assistance:

…You have come in by train this morning, I see.”

“You know me, then?”

“No, but I observe the second half of a return ticket in the palm of your left glove. You must have started early, and yet you had a good drive in a dog-cart, along heavy roads, before you reached the station.”

The lady gave a violent start and stared in bewilderment at my companion.

“There is no mystery, my dear madam,” said he, smiling. “The left arm of your jacket is spattered with mud in no less than seven places. The marks are perfectly fresh. There is no vehicle save a dog-cart which throws up mud in that way, and then only when you sit on the left-hand side of the driver.”

“Whatever your reasons may be, you are perfectly correct,” said she. “I started from home before six, reached Leatherhead at twenty past, and came in by the first train to Waterloo…

Notice what Holmes does: he forms hypotheses about what the lady did, based on a selective observation of facts. Nothing is said about why he picks those particular facts – the ticket stub and the freshness / location of mud spatters on the lady’s jacket.  Indeed, as Holmes says in another story, “You know my method. It is founded upon the observation of trifles.”

Abductive reasoning is essentially about recognising which trifles are important.

–x–

I have a gold chain that my mum gave me many years ago.  I’ve worn it for so long that now I barely notice it. The only time I’m consciously aware that I’m wearing the chain is when I finger it around my neck, a (nervous?) habit I have developed over time.

As you might imagine, I’m quite attached to my gold chain. So, when I discovered it was missing a few days ago, my first reaction was near panic,  I felt like a part of me had gone missing.

Since I hardly ever take the chain off, I could not think of any plausible explanation for how I might have lost it. Indeed, the only time I have had to consistently take the chain off is when going in for an X-ray or, on occasion, through airport security.

Where could it have gone?

After mulling over it for a while, the only plausible explanation I could think of is that I had taken it off at airport security when returning from an overseas trip a week earlier, and had somehow forgotten to collect it on the other side.  Realising that it would be near impossible to recover it, I told myself to get used to the idea that it was probably gone for good.

That Sunday, I went for a swim. After doing my laps, I went to the side of the pool for my customary shower. Now, anyone who has taken off a rash vest after a swim will know that it can be a struggle. I suspect this is because water trapped between skin and fabric forms a thin adhesive layer (a manifestation of surface tension perhaps?).  Anyway, I wrestled the garment over my head and it eventually came free with a snap, generating a spray of droplets that gleamed in reflected light.

Later in the day, I was at the movies. For some reason, when coming out of the cinema, I remembered the rash vest and the flash of droplets.  Hmm, I thought, “a gleam of gold….”

…A near forgotten memory: I vaguely recalled a flash of gold while taking of my rash vest in the pool shower some days ago. Was it after my previous swim or the week earlier, I couldn’t be sure. But I distinctly remembered it had bothered me enough to check the floor of the cubicle cursorily. Finding nothing, I had completely forgotten about it and moved on.

Could  it have come off there?

As I thought about it some more, possibility turned to plausibility: I was convinced it was what had happened. Although unlikely I would find it there now,  it was worth a try on the hope that someone had found the chain and turned it in as lost property.

I stopped over at the pool on my way back from the movies and asked at reception.

“A gold chain? Hmm, I think you may be in luck,” he said, “I was doing an inventory of lost property last week and came across a chain. I was wondering why no one had come in to claim something so valuable.”

“You’re kidding,” I said, incredulous. “You mean you have a gold chain?”

“Yeah, and I’m pretty sure it will still be there unless someone else has claimed it,” he replied. “I’ll have a look in the safe. Can you describe it for me?”

I described it down to the brief inscription on the clasp.

“Wait here,” he said, “I’ll be a sec”

It took longer than that but he soon emerged, chain in hand.

I could not believe my eyes; I had given up on ever recovering it. “Thanks, so much” I said fervently, “you won’t believe how much it means to me to have found this.”

“No worries mate,” he said, smiling broadly. “Happy to have helped.”

–x–

Endnote: in case you haven’t read it yet, I recommend you take ten minutes to read Sherlock Holmes’ finest adventure and abductive masterpiece, The Adventure of the Speckled Band.

Written by K

December 4, 2018 at 6:05 am

Learning, evolution and the future of work

leave a comment »

The Janus-headed rise of AI has prompted many discussions about the future of work.  Most, if not all, are about AI-driven automation and its consequences for various professions. We are warned to prepare for this change by developing skills that cannot be easily “learnt” by machines.  This sounds reasonable at first, but less so on reflection: if skills that were thought to be uniquely human less than a decade ago can now be done, at least partially, by machines, there is no guarantee that any specific skill one chooses to develop will remain automation-proof in the medium-term future.

This begs the question as to what we can do, as individuals, to prepare for a machine-centric workplace. In this post I offer a perspective on this question based on Gregory Bateson’s writings as well as  my consulting and teaching experiences.

Levels of learning

Given that humans are notoriously poor at predicting the future, it should be clear hitching one’s professional wagon to a specific set of skills is not a good strategy. Learning a set of skills may pay off in the short term, but it is unlikely to work in the long run.

So what can one do to prepare for an ambiguous and essentially unpredictable future?

To answer this question, we need to delve into an important, yet oft-overlooked aspect of learning.

A key characteristic of learning is that it is driven by trial and error.  To be sure, intelligence may help winnow out poor choices at some stages of the process, but one cannot eliminate error entirely. Indeed, it is not desirable to do so because error is essential for that “aha” instant that precedes insight.  Learning therefore has a stochastic element: the specific sequence of trial and error followed by an individual is unpredictable and likely to be unique. This is why everyone learns differently: the mental model I build of a concept is likely to be different from yours.

In a paper entitled, The Logical Categories of Learning and Communication, Bateson noted that the stochastic nature of learning has an interesting consequence. As he notes:

If we accept the overall notion that all learning is in some degree stochastic (i.e., contains components of “trial and error”), it follows that an ordering of the processes of learning can be built upon a hierarchic classification of the types of error which are to be corrected in the various learning processes.

Let’s unpack this claim by looking at his proposed classification:

Zero order learning –    Zero order learning refers to situations in which a given stimulus (or question) results in the same response (or answer) every time. Any instinctive behaviour – such as a reflex response on touching a hot kettle – is an example of zero order learning.  Such learning is hard-wired in the learner, who responds with the “correct” option to a fixed stimulus every single time. Since the response does not change with time, the process is not subject to trial and error.

First order learning (Learning I) –  Learning I is where an individual learns to select a correct option from a set of similar elements. It involves a specific kind of trial and error that is best explained through a couple of examples. The  canonical example of Learning I is memorization: Johnny recognises the letter “A” because he has learnt to distinguish it from the 25 other similar possibilities. Another example is Pavlovian conditioning wherein the subject’s response is altered by training: a dog that initially salivates only when it smells food is trained, by repetition, to salivate when it hears the bell.

A key characteristic of Learning I is that the individual learns to select the correct response from a set of comparable possibilities – comparable because the possibilities are of the same type (e.g. pick a letter from the set of alphabets). Consequently, first order learning  cannot lead to a qualitative change in the learner’s response. Much of traditional school and university teaching is geared toward first order learning: students are taught to develop the “correct” understanding of concepts and techniques via a repetition-based process of trial and error.

As an aside, note that much of what goes under the banner of machine learning and AI can be also classed as first order learning.

Second order learning (Learning II) –  Second order learning involves a qualitative change in the learner’s response to a given situation. Typically, this occurs when a learner sees a familiar problem situation in a completely new light, thus opening up new possibilities for solutions.  Learning II therefore necessitates a higher order of trial and error, one that is beyond the ken of machines, at least at this point in time.

Complex organisational problems, such as determining a business strategy, require a second order approach because they cannot be precisely defined and therefore lack an objectively correct solution. Echoing Horst Rittel, solutions to such problems are not true or false, but better or worse.

Much of the teaching that goes on in schools and universities hinders second order learning because it implicitly conditions learners to frame problems in ways that make them amenable to familiar techniques. However, as Russell Ackoff noted, “outside of school, problems are seldom given; they have to be taken, extracted from complex situations…”   Two  aspects of this perceptive statement bear further consideration. Firstly, to extract a problem from a situation one has to appreciate or make sense of  the situation.  Secondly,  once the problem is framed, one may find that solving it requires skills that one does not possess. I expand on the implications of these points in the following two sections.

Sensemaking and second order learning

In an earlier piece, I described sensemaking as the art of collaborative problem formulation. There are a huge variety of sensemaking approaches, the gamestorming site describes many of them in detail.   Most of these are aimed at exploring a problem space by harnessing the collective knowledge of a group of people who have diverse, even conflicting, perspectives on the issue at hand.  The greater the diversity, the more complete the exploration of the problem space.

Sensemaking techniques help in elucidating the context in which a problem lives. This refers to the the problem’s environment, and in particular the constraints that the environment imposes on potential solutions to the problem.  As Bateson puts it, context is “a collective term for all those events which tell an organism among what set of alternatives [it] must make [its] next choice.”  But this begs the question as to how these alternatives are to be determined.  The question cannot be answered directly because it depends on the specifics of the environment in which the problem lives.  Surfacing these by asking the right questions is the task of sensemaking.

As a simple example, if I request you to help me formulate a business strategy, you are likely to begin by asking me a number of questions such as:

  • What kind of business are you in?
  • Who are your customers?
  • What’s the competitive landscape?
  • …and so on

Answers to these questions fill out the context in which the business operates, thus making it possible to formulate a meaningful strategy.

It is important to note that context rarely remains static, it evolves in time. Indeed, many companies faded away because they failed to appreciate changes in their business context:  Kodak is a well-known example, there are many more.  So organisations must evolve too. However, it is a mistake to think of an organisation and its environment as evolving independently, the two always evolve together.  Such co-evolution is as true of natural systems as it is of social ones. As Bateson tells us:

…the evolution of the horse from Eohippus was not a one-sided adjustment to life on grassy plains. Surely the grassy plains themselves evolved [on the same footing] with the evolution of the teeth and hooves of the horses and other ungulates. Turf was the evolving response of the vegetation to the evolution of the horse. It is the context which evolves.

Indeed, one can think of evolution by natural selection as a process by which nature learns (in a second-order sense).

The foregoing discussion points to another problem with traditional approaches to education: we are implicitly taught that problems once solved, stay solved. It is seldom so in real life because, as we have noted, the environment evolves even if the organisation remains static. In the worst case scenario (which happens often enough) the organisation will die if it does not adapt appropriately to changes in its environment. If this is true, then it seems that second-order learning is important not just for individuals but for organisations as a whole. This harks back to notion of the notion of the learning organisation, developed and evangelized by Peter Senge in the early 90s. A learning organisation is one that continually adapts itself to a changing environment. As one might imagine, it is an ideal that is difficult to achieve in practice. Indeed, attempts to create learning organisations have often ended up with paradoxical outcomes.  In view of this it seems more practical for organisations to focus on developing what one might call  learning individuals – people who are capable of adapting to changes in their environment by continual learning

Learning to learn

Cliches aside, the modern workplace is characterised by rapid, technology-driven change. It is difficult for an  individual to keep up because one has to:

    • Figure out which changes are significant and therefore worth responding to.
    • Be capable of responding to them meaningfully.

The media hype about the sexiest job of the 21st century and the like further fuel the fear of obsolescence.  One feels an overwhelming pressure to do something. The old adage about combating fear with action holds true: one has to do something, but the question then is: what meaningful action can one take?

The fact that this question arises points to the failure of traditional university education. With its undue focus on teaching specific techniques, the more important second-order skill of learning to learn has fallen by the wayside.  In reality, though,  it is now easier than ever to learn new skills on ones own. When I was hired as a database architect in 2004, there were few quality resources available for free. Ten years later, I was able to start teaching myself machine learning using topnotch software, backed by countless quality tutorials in blog and video formats. However, I wasted a lot of time in getting started because it took me a while to get over my reluctance to explore without a guide. Cultivating the habit of learning on my own earlier would have made it a lot easier.

Back to the future of work

When industry complains about new graduates being ill-prepared for the workplace, educational institutions respond by updating curricula with more (New!! Advanced!!!) techniques. However, the complaints continue and  Bateson’s notion of second order learning tells us why:

  • Firstly, problem solving is distinct from problem formulation; it is akin to the distinction between human and machine intelligence.
  • Secondly, one does not know what skills one may need in the future, so instead of learning specific skills one has to learn how to learn

In my experience,  it is possible to teach these higher order skills to students in a classroom environment. However, it has to be done in a way that starts from where students are in terms of skills and dispositions and moves them gradually to less familiar situations. The approach is based on David Cavallo’s work on emergent design which I have often used in my  consulting work.  Two examples may help illustrate how this works in  the classroom:

  • Many analytically-inclined people think sensemaking is a waste of time because they see it as “just talk”. So, when teaching sensemaking, I begin with quantitative techniques to deal with uncertainty, such as Monte Carlo simulation, and then gradually introduce examples of uncertainties that are hard if not impossible to quantify. This progression naturally leads on to problem situations in which they see the value of sensemaking.
  • When teaching data science, it is difficult to comprehensively cover basic machine learning algorithms in a single semester. However, students are often reluctant to explore on their own because they tend to be daunted by the mathematical terminology and notation. To encourage exploration (i.e. learning to learn) we use a two-step approach: a) classes focus on intuitive explanations of algorithms and the commonalities between concepts used in different algorithms.  The classes are not lectures but interactive sessions involving lots of exercises and Q&A, b) the assignments go beyond what is covered in the classroom (but still well within reach of most students), this forces them to learn on their own. The approach works: just the other day, my wonderful co-teacher, Alex, commented on the amazing learning journey of some of the students – so tentative and hesitant at first, but well on their way to becoming confident data professionals.

In the end, though, whether or not an individual learner learns depends on the individual. As Bateson once noted:

Perhaps the best documented generalization in the field of psychology is that, at any given moment, the behavioral characteristics of a mammal, and especially of [a human], depend upon the previous experience and behavior of that individual.

The choices we make when faced with change depend on our individual natures and experiences. Educators can’t do much about the former but they can facilitate more meaningful instances of the latter, even within the confines of the classroom.

Written by K

July 5, 2018 at 6:05 pm

An intuitive introduction to support vector machines using R – Part 1

leave a comment »

About a year ago, I wrote a piece on support vector machines as a part of my gentle introduction to data science R series. So it is perhaps appropriate to begin this piece with a few words about my motivations for writing yet another article on the topic.

Late last year, a curriculum lead at DataCamp got in touch to ask whether I’d be interested in developing a course on SVMs for them.

My answer was, obviously, an enthusiastic “Yes!”

Instead of rehashing what I had done in my previous article, I thought it would be interesting to try an approach that focuses on building an intuition for how the algorithm works using examples of increasing complexity, supported by visualisation rather than math.  This post is the first part of a two-part series based on this approach.

The article builds up some basic intuitions about support vector machines (abbreviated henceforth as SVM) and then focuses on linearly separable problems. Part 2 (to be released at a future date) will deal with radially separable and more complex data sets. The focus throughout is on developing an understanding what the algorithm does rather than the technical details of how it does it.

Prerequisites for this series are a basic knowledge of R and some familiarity with the ggplot package. However, even if you don’t have the latter, you should be able to follow much of what I cover so I encourage you to press on regardless.

<advertisement> if you have a DataCamp account, you may want to check out my course on support vector machines using R. Chapters 1 and 2 of the course closely follow the path I take in this article. </advertisement>

A one dimensional example

A soft drink manufacturer has two brands of their flagship product: Choke (sugar content of 11g/100ml) and Choke-R (sugar content 8g/100 ml). The actual sugar content can vary quite a bit in practice so it can sometimes be hard to figure out the brand given the sugar content.  Given sugar content data for 25 samples taken randomly from both populations (see file sugar_content.xls), our task is to come up with a decision rule for determining the brand.

Since this is one-variable problem, the simplest way to discern if the samples fall into distinct groups is through visualisation.  Here’s one way to do this using ggplot:

#load required library
library(ggplot2)
#load data from sugar_content.csv (remember to save the Excel file as a csv!)
drink_samples <- read.csv(file= “sugar_content.csv”)
#create plot
p <- ggplot(data=drink_samples, aes(x=drink_samples$sugar_content, y=c(0)))
p <- p + geom_point() + geom_text(label=drink_samples$sugar_content,size=2.5, vjust=2, hjust=0.5)
#display it
p

…and here’s the resulting plot:

sugar content plot

Figure 1: Sugar content of samples

Note that we’ve simulated a one-dimensional plot by setting all the y values to 0.

From the plot, it is evident that the samples fall into distinct groups: low sugar content, bounded above by the 8.8 g/100ml sample and high sugar content, bounded below by the 10 g/100ml sample.

Clearly, any point that lies between the two points is an acceptable decision boundary. We could, for example, pick 9.1g/100ml and 9.7g/100ml. Here’s the R code with those points added in. Note that we’ve made the points a bit bigger and coloured them red to distinguish them from the sample points.

#p created in previous code block!
#dataframe to hold separators
d_bounds <- data.frame(sep=c(9.1,9.7))
#add layer containing decision boundaries to previous plot
p <- p + geom_point(data=d_bounds, aes(x=d_bounds$sep, y=c(0)), colour= “red”, size=3)
#add labels for candidate decision boundaries
p <- p + geom_text(data=d_bounds, aes(x=d_bounds$sep, y=c(0)),
label=d_bounds$sep, size=2.5,
vjust=2, hjust=0.5, colour=”red”)
#display plot
p

And here’s the plot:

Figure 2: Plot showing example decision boundaries (in red)

Now, a bit about the decision rule. Say we pick the first point as the decision boundary, the decision rule would be:

Say we pick 9.1 as the decision boundary, our classifier (in R) would be:

ifelse(drink_sample$sugar_content < 9.1, “Choke-R”,”Choke”)

The other one is left for you as an exercise.

Now, it is pretty clear that although either these points define an acceptable decision boundary, neither of them are the best.  Let’s try to formalise our intuitive notion as to why this is so.

The margin is the distance between the points in both classes that are closest to the decision boundary. In case at hand, the margin is 1.2 g/100ml, which is the difference between the two extreme points at 8.8 g/100ml (Choke-R) and 10 g/100ml (Choke). It should be clear that the best separator is the one that lies halfway between the two extreme points. This is called the maximum margin separator. The maximum margin separator in the case at hand is simply the average of the two extreme points:

#dataframe to hold max margin separator
mm_sep <- data.frame(sep=c((8.8+10)/2))
#add layer containing max margin separator to previous plot
p <- p +
geom_point(data=mm_sep,aes(x=mm_sep$sep, y=c(0)), colour=”blue”, size=4)
#display plot
p

And here’s the plot:

Figure 3: Plot showing maximum margin separator (in blue)

We are dealing with a one dimensional problem here so the decision boundary is a point. In a moment we will generalise this to a two dimensional case in which the boundary is a straight line.

Let’s close this section with some general points.

Remember this is a sample not the entire population, so it is quite possible (indeed likely) that there will be as yet unseen samples of Choke-R and Choke that have a sugar content greater than 8.8 and less than 10 respectively.  So, the best classifier is one that lies at the greatest possible distance from both classes. The maximum margin separator is that classifier.

This toy example serves to illustrate the main aim of SVMs, which is to find an optimal separation boundary in the sense described here. However, doing this for real life problems is not so simple because life is not one dimensional. In the remainder of this article and its yet-to-be-written sequel, we will work through examples of increasing complexity so as to develop a good understanding of how SVMs work in addition to practical experience with using the popular SVM implementation in R.

<Advertisement> Again, for those of you who have DataCamp premium accounts, here is a course that covers  pretty much the  entire territory of this two part series. </Advertisement>

Linearly separable case

The next level of complexity is a two dimensional case (2 predictors) in which the classes are separated by a straight line. We’ll create such a dataset next.

Let’s begin by generating 200 points with attributes x1 and x2, randomly distributed between 0 and 1. Here’s the R code:

#number of datapoints
n <- 200
#Generate dataframe with 2 uniformly distributed predictors x1 and x2 in (0,1)
df <- data.frame(x1=runif(n),x2=runif(n))

Let’s visualise the generated data using a scatter plot:

#load ggplot
library(ggplot2)
#build scatter plot
p <- ggplot(data=df, aes(x=x1,y=x2)) + geom_point()
#display it
p

And here’s the plot

Figure 4: scatter plot of uniformly distributed datapoints

Now let’s classify the points that lie above the line x1=x2 as belonging to the class +1 and those that lie below it as belonging to class -1 (the class values are arbitrary choices, I could have chosen them to be anything at all). Here’s the R code:

# if x1>x2 then -1, else +1
df$y <- factor(ifelse(df$x1-df$x2>0,-1,1),levels=c(-1,1))

Let’s modify the plot in Figure 4, colouring the points classified as +1n blue and those classified -1 red. For good measure, let’s also add in the decision boundary. Here’s the R code:

#load ggplot if not loaded
library(ggplot2)
#build scatter plot, distinguishing classes by colour
p <- ggplot(data=df, aes(x=x1,y=x2,colour=y)) + geom_point() + scale_colour_manual(values=c(“-1″=”red”,”1″=”blue”))
#add decision boundary
p <- p + geom_abline(slope=1,intercept=0)
#display plot
p

Note that the parameters in geom_abline()  are derived from the fact that the line x1=x2 has slope 1 and y intercept 0.

Here’s the resulting plot:

Figure 5: Linearly separable dataset with boundary.

Next let’s introduce a margin in the dataset. To do this, we need to exclude points that lie within a specified distance of the boundary.  A simple way to approximate this is to exclude points that have  x1 and x2 values that differ by less a pre-specified value, delta. Here’s the code to do this with delta set to 0.05 units.

#create a margin of 0.05 in dataset
delta <- 0.05
# retain only those points that lie outside the margin
df1 <- df[abs(df$x1-df$x2)>delta,]
#check number of datapoints remaining
nrow(df1)

The check on the number of datapoints tells us that a number of points have been excluded.

Running the previous ggplot code block yields the following plot which clearly shows the reduced dataset with the depopulated region near the decision boundary:

Figure 6: Dataset with margin (note depleted areas on either side of boundary)

Let’s add the margin boundaries to the plot. We know that these are parallel to the decision boundary and lie delta units on either side of it. In other words, the margin boundaries have slope=1 and y intercepts delta and –delta. Here’s the ggplot code:

#add margins to plot object created earlier
p <- p + geom_abline(slope=1,intercept = delta, linetype=”dashed”) + geom_abline(slope=1,intercept = -delta, linetype=”dashed”)
#display plot
p

And here’s the plot with the margins:

Figure 7: Linearly separable dataset with margin and decision boundary displayed

 

OK, so we have constructed a dataset that is linearly separable, which is just a short code for saying that the classes can be separated by a straight line. Further, the dataset has a margin, i.e. there is a “gap” so to speak, between the classes. Let’s save the dataset so that we can use it in the next section where we’ll take a first look at the svm() function in the e1071 package.

write.csv(df1,file=”linearly_separable_with_margin.csv”,row.names = FALSE)

That done,  we can now move on to…

Linear SVMs

Let’s begin  by reading in the datafile we created in the previous section:

#read in dataset for linearly separable data with margin
df <- read.csv(file = “linearly_separable_with_margin.csv”)
#set y to factor explicitly
df$y <- as.factor(df$y)

We then split the data into training and test sets using an 80/20 random split. There are many ways to do this. Here’s one:

#set seed for random number generation
set.seed(1)
#split train and test data 80/20
df[,”train”] <- ifelse(runif(nrow(df))<0.8,1,0)
trainset <- df[df$train==1,]
testset <- df[df$train==0,]
#find “train” column index
trainColNum <- grep(“train”,names(trainset))
#remove column from train and test sets
trainset <- trainset[,-trainColNum]
testset <- testset[,-trainColNum]

The next step is to build the an SVM classifier model. We will do this using the svm() function which is available in the e1071 package. The svm() function has a range of parameters. I explain some of the key ones below, in particular, the following parameters: type, cost, kernel and scale.  It is recommended to have a browse of the documentation for more details.

The type parameter specifies the algorithm to be invoked by the function. The algorithm is capable of doing both classification and regression. We’ll focus on classification in this article. Note that there are two types of classification algorithms, nu and C classification. They essentially differ in the way that they penalise margin and boundary violations, but can be shown to lead to equivalent results. We will stick with C classification as it is more commonly used.  The “C” refers to the cost which we discuss next.

The cost parameter specifies the penalty to be applied for boundary violations.  This parameter  can vary from 0 to infinity (in practice a large number compared to 0, say 10^6 or 10^8). We will explore the effect of varying cost later in this piece. To begin with, however, we will leave it at its default value of 1.

The kernel parameter specifies the kind of function to be used to construct the decision boundary. The options are linear, polynomial and radial.  In this article we’ll focus on linear kernels as we know the decision boundary is a straight line.

The scale parameter is a Boolean that tells the algorithm whether or not the datapoints should be scaled to have zero mean and unit variance (i.e. shifted by the mean and scaled by the standard deviation).  Scaling is generally good practice to avoid undue influence of attributes that have unduly large numeric values. However, in this case we will avoid scaling as we know the attributes are bounded and (more important) we would like to plot the boundary obtained from the algorithm manually.

Building the model is a simple one-line call, setting appropriate values for the parameters:

#load library
library(e1071)
#build model using parameter settings discussed earlier
svm_model <- svm(y ~ ., data=trainset, type=”C-classification”, kernel=”linear”, scale=FALSE)

We expect a linear model to perform well here since the dataset it is linear by construction. Let’s confirm this by calculating training and test accuracy. Here’s the code:

#training accuracy
pred_train <- predict(svm_model,trainset)
mean(pred_train==trainset$y)
[1] 1
#test accuracy
pred_test <- predict(svm_model,testset)
mean(pred_test==testset$y)
[1] 1

The perfect accuracies confirm our expectation. However, accuracies by themselves are misleading because the story is somewhat more nuanced. To understand why, let’s plot the predicted decision boundary and margins using ggplot. To do this, we have to first extract information regarding these from the svm model object. One can obtain summary information for the model by typing in the model name like so:

svm_model
Call:
svm(formula = y ~ ., data = trainset, type = “C-classification”,
kernel = “linear”, scale = FALSE)
Parameters:
SVM-Type: C-classification
SVM-Kernel: linear
cost: 1
gamma: 0.5
Number of Support Vectors: 55

Which outputs the following: the function call, SVM type, kernel and cost (which is set to its default). In case you are wondering about gamma,  although it’s set to 0.5 here, it plays no role in linear SVMs. We’ll say more about it in the sequel to this article in which we’ll cover more complex kernels. More interesting are the support vectors. In a nutshell, these are training dataset points that specify the location of the decision boundary. We can develop a better understanding of their role by visualising them. To do this, we need to know their coordinates and indices (position within the dataset). This information is stored in the SVM model object. Specifically, the index element of svm_model contains the indices of the training dataset points that are support vectors and the SV element lists the coordinates of these points. The following R code lists these explicitly (Note that I’ve not shown the outputs in the code snippet below):

#index of support vectors in training dataset
svm_model$index
#Support vectors
svm_model$SV

Let’s use the indices to visualise these points in the training dataset. Here’s the ggplot code to do that:

#load library
library(ggplot2)
#build plot of training set, distinguishing classes by colour as before
p <- ggplot(data=trainset, aes(x=x1,y=x2,colour=y)) + geom_point()+ scale_colour_manual(values=c(“red”,”blue”))
#identify support vectors in training set
df_sv <- trainset[svm_model$index,]
#add layer marking out support vectors with semi-transparent purple blobs
p <- p + geom_point(data=df_sv,aes(x=x1,y=x2),colour=”purple”,size = 4,alpha=0.5)
#display plot
p

And here is the plot:

Figure 8: Training dataset showing support vectors

We now see that the support vectors are clustered around the boundary and, in a sense, serve to define it. We will see this more clearly by plotting the predicted decision boundary. To do this, we need its slope and intercept.  These  aren’t available directly available in the svm_model, but they can be extracted from the coefs, SV and rho elements of the  object.

The first step is to use coefs and the support vectors to build the what’s called the weight vector. The weight vector is given by the product of the coefs matrix with the matrix containing the SVs.  Note that the fact that only the support vectors play a role in defining the boundary is consistent with our expectation that the boundary should be fully specified by them. Indeed, this is often touted as a feature of SVMs in that it is one of the few classifiers that depends on only a small subset of the training data, i.e. the datapoints closest to the boundary rather than the entire dataset.

#build weight vector
w <- t(svm_model$coefs) %*% svm_model$SV

Once we have the weight vector, we can calculate the slope and intercept of the predicted decision boundary as follows:

#calculate slope
slope_1 <- -w[1]/w[2]
slope_1
[1] 0.9272129
#calculate intercept
intercept_1 <- svm_model$rho/w[2]
intercept_1
[1] 0.02767938

Note that the slope and intercept are quite different from the correct values of 1 and 0 (reminder: the actual decision boundary is the line x1=x2 by construction).  We’ll see how to improve on this shortly, but before we do that, let’s plot the decision boundary using the  slope and intercept we have just calculated. Here’s the code:

# augment Figure 8 with decision boundary using calculated slope and intercept
p <- p + geom_abline(slope=slope_1,intercept = intercept_1)
# display plot
p

And here’s the augmented plot:

 

Figure 9: Training dataset showing support vectors and decision boundary

The plot clearly shows how the support vectors “support” the boundary – indeed, if one draws line segments from each of the points to the boundary in such a way that the intersect the boundary at right angles, the lines can be thought of as “holding the boundary in place”. Hence the term support vector.

This is a good time to mention that the e1071 library provides a built-in plot method for svm function. This is invoked as follows:

#plot using function provided in e1071
#Note: no need to specify plane as there are only 2 predictors
plot(x=svm_model, data=trainset)

The svm plot function takes a formula specifying the plane on which the boundary is to be plotted. This is not necessary here as we have only two predictors (x1 and x2) which automatically define a plane.

Here is the plot generated by the above code:

Figure 10: Decision boundary for linearly separable dataset visualised using svm.plot()

Note that the axes are switched (x1 is on the y axis). Aside from that, the plot is reassuringly similar to our ggplot version in Figure 9. Also note that that the support vectors are marked by “x”.  Unfortunately the built in function does not display the margin boundaries, but this is something we can easily add to our home-brewed plot. Here’s how.  We know that the margin boundaries are parallel to the decision boundary, so all we need to find out is their intercept.  It turns out that the intercepts are offset by an amount  1/w[2] units on either side of the decision boundary. With that information in hand we can now write the the code to add in the margins to the plot shown in Figure 9. Here it is:

#margins are offset 1/w[2] on either side of decision boundary
#p created in earlier code block
p <- p + geom_abline(slope=slope_1,intercept = intercept_1-1/w[2], linetype=”dashed”)+
geom_abline(slope=slope_1,intercept = intercept_1+1/w[2], linetype=”dashed”)
#display plot
p

And here is the plot with the margins added in:

Figure 11: Training dataset showing support vectors  + decision and margin boundaries

Note that the predicted margins are much wider than the actual ones (compare with Figure 7). As a consequence, many of  the support vectors lie within the predicted margin – that is, they violate it. The upshot of the wide margin is that the decision boundary is not tightly specified. This is why we get a significant difference between the slope and intercept of  predicted decision boundary and the actual one. We can sharpen the boundary by narrowing the margin. How do we do this? We make margin violations more expensive by increasing the cost.  Let’s see this margin-narrowing effect in action by building a model with cost = 100 on the same training dataset as before. Here is the code:

#build cost=100 model using parameter settings discussed earlier
svm_model <- svm(y ~ ., data=trainset, type=”C-classification”, kernel=”linear”, cost=100, scale=FALSE)

I’ll leave you to calculate the training and test accuracies (as one might expect, these will be perfect).

Let’s inspect the cost=100 model:

svm_model
Call:
svm(formula = y ~ ., data = trainset, type = “C-classification”,
kernel = “linear”,cost=100, scale = FALSE)
Parameters:
SVM-Type: C-classification
SVM-Kernel: linear
cost: 100
gamma: 0.5
Number of Support Vectors: 6

The number of support vectors is reduced from 55 to 6! We can plot these and the boundary / margin lines using ggplot as before. The code is identical to the previous case (see code block preceding Figure 8). If you run it, you will get the plot shown in Figure 12.

Figure 12: Training dataset showing support vectors for cost=100 case

 

Since the boundary is more tightly specified, we would expect the slope and intercept of the predicted boundary to be considerably closer to their actual values of 1 and 0 respectively (as compared to the default cost case). Let’s confirm that this is so by calculating the slope and intercept as we did in the code snippets preceding Figure 9. Here’s the code:

#build weight vector
w <- t(svm_model$coefs) %*% svm_model$SV
#calculate slope
slope_100 <- -w[1]/w[2]
slope_100
[1] 0.9732495
#calculate intercept
intercept_100 <- svm_model$rho/w[2]
intercept_100
[1] 0.01472426

Which nicely confirms our expectation.

The decision boundary and margins for the high cost case can also be plotted with the code shown earlier. Her it is for completeness:

# augment Figure 12 with decision boundary using calculated slope and intercept
p <- p + geom_abline(slope=slope_100,intercept = intercept_100)
#margins are offset 1/w[2] on either side of decision boundary
p <- p + geom_abline(slope=slope_100,intercept = intercept_100-1/w[2], linetype=”dashed”)+
geom_abline(slope=slope_100,intercept = intercept_100+1/w[2], linetype=”dashed”)
#display plot
p

And here’s the plot:

Figure 13: Training dataset with support vectors predicted decision boundary and margins for cost=100

SVMs that allow margin violations are called soft margin classifiers and those that do not are called hard. In this case, the hard margin classifier does a better job because it specifies the boundary more accurately than its soft counterpart. However, this does not mean that hard margin classifier are to be preferred over soft ones in all situations. Indeed, in real life, where we usually do not know the shape of the decision boundary upfront, soft margin classifiers can allow for a greater degree of uncertainty in the decision boundary thus improving generalizability of the classifier.

OK, so now we have a good feel for what the SVM  algorithm does in the linearly separable case. We will round out this article by looking at a real world dataset that fortuitously turns out to be almost linearly separable: the famous (notorious?) iris dataset. It is instructive to look at this dataset because it serves to illustrate another feature of the e1071 SVM algorithm – its capability to handle classification problems that have more than 2 classes.

A multiclass problem

The iris dataset is well-known in the machine learning community as it features in many introductory courses and tutorials. It consists of 150 observations of 3 species of the iris flower – setosa, versicolor and virginica.  Each observation consists of numerical values for 4 independent variables (predictors): petal length, petal width, sepal length and sepal width.  The dataset is available in a standard installation of R as a built in dataset. Let’s read it in and examine its structure:

# read data
data(iris)
str(iris)
‘data.frame’: 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 …
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 …
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 …
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 …
$ Species : Factor w/ 3 levels “setosa”,”versicolor”,..: 1 1 1 1 1 1 1 1 1 1 …

Now, as it turns out, petal length and petal width are the key determinants of species. So let’s create a scatterplot of the datapoints as a function of these two variables (i.e. project each data point on  the petal length-petal width plane). We will also distinguish between species using different colour. Here’s the ggplot code to do this:

# plot petal width vs petal length
library(ggplot2)
p <- ggplot(data=iris, aes(x=Petal.Width,y=Petal.Length,colour=Species)) + geom_point()
p

And here’s the plot:

Figure 15: iris dataset, petal width vs petal length

 

On this plane we see a clear linear boundary between setosa and the other two species, versicolor and virginica. The boundary between the latter two is almost linear. Since there are four predictors, one would have to plot the other combinations to get a better feel for the data. I’ll leave this as an exercise for you and move on with the assumption that the data is nearly linearly separable. If the assumption is grossly incorrect, a linear SVM will not work well.

Up until now, we have discussed binary classification problem, i.e. those in which the predicted variable can take on only two values. In this case, however, the predicted variable, Species, can take on 3 values (setosa, versicolor and virginica). This brings up the question as to how the algorithm deals multiclass classification problems – i.e those involving datasets with more than two classes. The SVM algorithm does this using a one-against-one classification strategy. Here’s how it works:

  • Divide the dataset (assumed to have N classes) into N(N-1)/2 datasets that have two classes each.
  • Solve the binary classification problem for each of these subsets
  • Use a simple voting mechanism to assign a class to each data point.

Basically, each data point is assigned the most frequent classification it receives from all the binary classification problems it figures in.

With that said, let’s get on with building the classifier. As before, we begin by splitting the data into training and test sets using an 80/20 random split. Here is the code to do this:

#set seed for random number generation
set.seed(10)
#split train and test data 80/20
iris[,”train”] <- ifelse(runif(nrow(iris))<0.8,1,0)
trainset <- iris[iris$train==1,]
testset <- iris[iris$train==0,]
#find “train” column index
trainColNum <- grep(“train”,names(trainset))
#remove column from train and test sets
trainset <- trainset[,-trainColNum]
testset <- testset[,-trainColNum]

Then we build the model (default cost) and examine it:

#build default cost model
svm_model<- svm(Species~ ., data=trainset,type=”C-classification”, kernel=”linear”)

The main thing to note is that the function call is identical to the binary classification case. We get some basic information about the model by typing in the model name as before:

svm_model
Call:
svm(formula = Species ~ ., data = trainset, type = “C-classification”,
kernel = “linear”)
Parameters:
SVM-Type: C-classification
SVM-Kernel: linear
cost: 1
gamma: 0.25
Number of Support Vectors: 26

And the train and test accuracies are computed in the usual way:

#training accuracy
pred_train <- predict(svm_model,trainset)
mean(pred_train==trainset$Species)
[1] 0.9770992
#test accuracy
pred_test <- predict(svm_model,testset)
mean(pred_test==testset$Species)
[1] 0.9473684

This looks good, but is potentially misleading because it is for a particular train/test split. Remember, in this case, unlike the earlier example, we do not know the shape of the actual decision boundary. So, to get a robust measure of accuracy, we should calculate the average test accuracy over a number of train/test partitions. Here’s some code to do that:

#load data, set seed and initialise vector to hold calculated accuracies
data(iris)
set.seed(10)
accuracy <- rep(NA,100)
#calculate test accuracy for 100 different partitions
for (i in 1:100){
iris[,”train”] <- ifelse(runif(nrow(iris))<0.8,1,0)
trainColNum <- grep(“train”,names(iris))
trainset <- iris[iris$train==1,-trainColNum]
testset <- iris[iris$train==0,-trainColNum]
svm_model <- svm(Species~ ., data=trainset, type=”C-classification”, kernel=”linear”)
pred_test <- predict(svm_model,testset)
accuracy[i] <- mean(pred_test==testset$Species)
}
mean(accuracy)
[1] 0.9620757
sd(accuracy)
[1] 0.03443983

Which is not too bad at all, indicating that the dataset is indeed nearly linearly separable. If you try different values of cost you will see that it does not make much difference to the average accuracy.

This is a good note to close this piece on. Those who have access to DataCamp premium courses will find that the content above is covered in chapters 1 and 2 of the course on support vector machines in R. The next article in this two-part series will cover chapters 3 and 4.

Summarising

My main objective in this article was to help develop an intuition for how SVMs work in simple cases. We illustrated the basic principles and terminology with a simple 1 dimensional example and then worked our way to linearly separable binary classification problems with multiple predictors. We saw how the latter can be solved using a popular svm implementation available in R.  We also saw that the algorithm can handle multiclass problems. All through, we used visualisations to see what the algorithm does and how the key parameters affect the decision boundary and margins.

In the next part (yet to be written) we will see how SVMs can be generalised to deal with complex, nonlinear decision boundaries. In essence, the use a mathematical trick to “linearise” these boundaries.  We’ll delve into details of this trick in an intuitive, visual way as we have done here.

Many thanks for reading!

Written by K

June 6, 2018 at 9:56 pm

%d bloggers like this: